west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "osteoblast" 15 results
  • Low-magnitude vibration promotes osteogenesis of osteoblasts in ovariectomized osteoporotic rats via the estrogen receptor α

    The purpose of this study was to investigate the effect of low-magnitude vibration on osteogenesis of osteoblasts in ovariectomized rats with osteoporosis via estrogen receptor α(ERα). The mRNA expression of osteogenic markers were examined with qRT-PCR, based on which the optimal vibration parameter for promoting osteogenesis was determined (45 Hz × 0.9 g, g = 9.8 m/s2). Then we loaded the optimal vibration parameter on the osteoblasts of ovariectomized rats with osteoporosis. The protein expression of osteogenic markers and ERα were detected with Western blot; the distribution of ERα was examined with immunofluorescence technique. Finally, through inhibiting the expression of ERα with estrogen receptor inhibitor ICI182780, the protein and mRNA expression of osteogenic markers were examined. First, the results showed that low-magnitude vibration could promote the expression of osteogenic markers and ERα in osteoblasts of ovariectomized rats with osteoporosis (P < 0.05), and make ERα transfer to the nucleus. On the other hand, the results also showed that after inhibiting the expression of ERα in osteoblasts of ovariectomized rats with osteoporosis, the protein and mRNA expression of osteogenic marker were decreased (P < 0.05). In our study, low-magnitude vibration played an important role in the osteogenesis of osteoblasts in ovariectomized rats with osteoporosis through increasing the expression and causing translocation of ERα. Furthermore, it provides a theoretical basis for the application of low-magnitude vibration in the prevention and treatment of postmenopausal osteoporosis.

    Release date:2020-12-14 05:08 Export PDF Favorites Scan
  • Effects of calcium phosphate cement combined with hyaluronic acid/curcumin on the proliferation and osteogenesis of osteoblasts

    ObjectiveAfter using hyaluronic acid (HA) to modify curcumin (CUR), the effects of calcium phosphate cement (CPC) combined with HA/CUR on the proliferation and osteogenesis of osteoblasts were investigated.MethodsFirst, HA and CUR were esterified and covalently combined to prepare HA/CUR, and the characteristics were observed and the infrared spectrum was tested. Then, HA, CUR, and HA/CUR were mixed with CPC according to 5% (W/W) to prepare HA-CPC, CUR-CPC, and HA/CUR-CPC, respectively. Setting time detection, scanning electron microscope observation, injectable performance test, and compression strength test were conducted; and the CPC was used as a control. Osteoblasts were isolated and cultured from the skull of newborn Sprague Dawley rats, and the 2nd generation cells were cultured with the 4 types of bone cement, respectively. The effects of HA/CUR-CPC on the proliferation and osteogenesis of osteoblasts were estimated by the scanning electron microscopy observation, live/dead cell fluorescence staining, cell counting, osteopontin (OPN) immunofluorescence staining, alkaline phosphatase (ALP) staining,and alizarin red staining.ResultsInfrared spectroscopy test showed that HA and CUR successfully covalently combined. The HA/CUR-CPC group had no significant difference in initial setting time, final setting time, injectable rate, and compressive strength when compared with the other 3 groups (P>0.05); scanning electron microscope observation showed that HA/CUR was scattered on CPC surface. After co-culture of bone cement and osteoblasts, scanning electron microscopy observation showed that the osteoblasts, which had normal morphology and the growth characteristics of osteoblasts, clustered and adhered to HA/CUR-CPC. There was no significant difference in cell survival rate between HA/CUR-CPC group and other groups (P>0.05), and the number of cells significantly increased (P<0.05); the degrees of OPN immunofluorescence staining, ALP staining, and alizarin red staining were stronger than other groups.ConclusionHA/CUR-CPC has good biocompatibility and mechanical properties, which can promote the proliferation and osteogenesis of osteoblasts.

    Release date:2021-01-29 03:56 Export PDF Favorites Scan
  • IMPLANTATION OF ALLOGENIC OSTEOBLAST COMBINED WITH CALCIUM PHOSPHTA COMPOSITES

    The aim of this experiment was to study the osteogenesis in vivo of allogenic osteoblast combined culture with calcium phosphate composites. The osteoblasts were obtained by enzymatic digestion of periosteum from fibula subcultured to 13 generations, the cells were combined culture with hydroxyapatite and biphasic calcium phosphate. Subseguently, the composite was implanted into rabbits subcutaneously or intramuscularly. The blank material was implanted in the contralateral side as control. Four weeks later, all animals were sacrificed. All the implants were examined by gross observation, histological examination and EDXA. The results showed: 1. obvious ingrowth of connective tissue with very little inflammatory reaction; 2. new bone formation in the composites with deposit of Ca and P on the surface of osteoblast, but none in the blank materials; 3. no significant difference of new bone formation between the different sites of implantation or different materials, but those implanted intramuscularly had lamellae form of new bone while those implanted subcutaneously had only mineralization of extracellular matrix. The conclusion were: 1. the composites are biocompatible with prior osteogenesis property; 2. periosteal-derived allogenic osteoblasts obatined by enzymatic digestion could survive following implantation with bioactivity; 3. rich blood supply might be advantageous to new bone formation and its maturation.

    Release date:2016-09-01 11:08 Export PDF Favorites Scan
  • Effect of knocking down Piezo1 mechanically sensitive protein on migration of MC3T3-E1 osteoblast cells

    ObjectiveTo discuss the effect of Piezo1 mechanically sensitive protein in migration process of mouse MC3T3-E1 osteoblast cells.MethodsThe 5th-10th generation mouse MC3T3-E1 osteoblasts were divided into Piezo1-small interfering RNA (siRNA) transfection group (group A), negative control group (group B), and blank control group (group C). Piezo1-siRNA or negative control siRNA was transfected into mouse MC3T3-E1 osteoblasts by siRNA transfection reagent, respectively; group C was only added with siRNA transfection reagent; and the cell morphology was observed under inverted phase contrast microscope and fluorescence microscope, and the transfection efficiency was calculated. The expression of Piezo1 protein was detected by immunofluorescence staining and Western blot. Transwell cell migration assay and cell scratch assay were used to detect the migration of MC3T3-E1 osteoblasts after Piezo1-siRNA transfection.ResultsAfter 48 hours of transfection, group A showed a slight increase in cell volume and mutant growth, but cell colonies decreased, suspension cells increased and cell fragments increased when compared with untransfected cells. Under fluorescence microscope, green fluorescence was observed in MC3T3-E1 osteoblasts of group B, and the transfection efficiency was 68.56%±4.12%. Immunofluorescence staining and Western blot results showed that the expression level of Piezo1 protein in group A was significantly lower than that in groups B and C (P<0.05); there was no significant difference between group B and group C (P>0.05). Transwell cell migration assay and cell scratch assay showed that the number of cells per hole and the scratch healing rate of cells cultured for 1-4 days in group A were significantly lower than those in groups B and C (P<0.05); there was no significant difference between group B and group C (P>0.05).ConclusionPiezo1 knocked down by siRNA can inhibit the migration ability of MC3T3-E1 osteoblast cells.

    Release date:2019-01-03 04:07 Export PDF Favorites Scan
  • Progress of research on the relationship between calcitonin gene-related peptide and RANK/RANKL/OPG system in the bone reconstruction

    ObjectiveTo summarize the research progress on the calcitonin gene-related peptide (CGRP) and receptor activator of nuclear factor κB (RANK)/receptor activator of nuclear factor κB ligand (RANKL)/osteoprotegerin (OPG) system during bone reconstruction to provide theoretical basis for further research on the prevention and treatment of bone-related diseases.MethodsThe relevant research results at home and abroad in recent years were analyzed and summarized.ResultsCGRP and RANK/RANKL/OPG system play important regulatory roles in the bone reconstruction.ConclusionAt present, the research on the mechanism of CGRP and RANK/RANKL/OPG system in bone reconstruction is insufficient. Therefore, it is necessary to study further on the process and interrelation of CGRP and RANK/RANKL/OPG system in bone reconstruction to confirm their mechanism, which will bring new ideas and methods for the treatment of bone related diseases in clinic.

    Release date:2019-05-06 04:46 Export PDF Favorites Scan
  • Research progress in the mechanism of protein factors in regulating bone remodeling

    ObjectiveTo review the role and mechanism of protein factors in bone remodeling, and provides theoretical basis for further elucidating the pathogenesis and clinical treatment of bone-related diseases. MethodsThe relevant research results at home and abroad in recent years were extensively consulted, analyzed, and summarized. ResultsBone remodeling is an important physiological process to maintain bone homeostasis. Protein, as an important stimulator in bone remodeling, regulates the balance between bone resorption and bone formation. ConclusionAt present, the research on the mechanism of protein in bone remodeling is insufficient. Therefore, it is necessary to further study the specific time, process, and interaction network of protein in bone remodeling, and to confirm its mechanism in bone remodeling, so as to reveal and treat the pathogenesis of bone-related diseases.

    Release date:2019-01-03 04:07 Export PDF Favorites Scan
  • A RESEARCH ON ECTOPIC OSTEOGENESIS AND VASCULARIZATION OF TISSUE ENGINEERED BONE PROMOTED BY 1,25-(OH)2 D3

    Objective To study the ectopic osteogenesis and vascularization ofthe tissue engineered bone promoted by an artificial bone composite that consists of coral hydroxyapatite (CHA), 1,25-(OH)2 D3, human marrow stromal osteoblast (hMSO), and human umbilical vein endothelial cell (hUVEC).Methods After the isolation and the culture in vitro, hMSO and hUVEC were obtained. Then, hMSO (5×105/ml) and hUVEC (2.5×105/ml) were seeded at a ratio of 2∶1 onto the CHA scaffolds coated with 1,25-(OH)2 D3 (the experimental group) or onto the CHA scaffolds without 1,25-(OH)2 D3 (the control group). The scaffolds were culturedin vitro for 3 days, and then the scaffolds were implanted into the pockets that had beenmade on the backs of 18 nude mice. Then, 6 of the mice were implanted with one experimental engineered bone bilaterally; another 6 mice were implanted with onecontrol engineered bone bilaterally; the remaining 6 mice were implanted with one experimental engineered bone and one control engineered bone on each side. At4, 8 and 12 weeks after operation, the retrieved scaffolds and cells were examined by the nake eye and histology as well as by the scanning electron microscopy. The quantitative assessment of the newly-formed bone and the quantitative analysis of the newly-formed blood vessels were performed. Results The evaluationsby the histology revealed that at 4 weeks the original bone tissues grew into the scaffolds in all the groups, but significantly more newly-formed bone tissuesand newly-formed blood vessels were found in the experimental group. At 12 weeks the newly-formed bone tissues were found in all the groups, but there was a typical bone unit found in the experimental group. There was a significantly smaller amount of capillary vessels in the control group than in the experimental group at all the time points. The evaluations by the scanning electron microscopy revealed that at 4 weeks in the experimental group there were great amounts of extracelluar matrix that embedded the cells, and plenty of capillary vessels were found on the surface of the implanted bone materials and some of them grew into the materials; however, in the control group there was a smaller amount of capillary vessels although much extracelluar matrix was still found there. At 8 weeks sarciniform osteoids were found on some of the implanted materials, with much extracelluar matrix and many newly-formed capillary vessels in the experimental group; however, in the control group there were fewer capillary vessels and lower degrees of the bone maturity. The quantitative assessment of the newly-formed bone showed that the newformed bones were 3.1±0.52 in the experimental group but2.30±0.59 in the control group at 8 weeks (Plt;0.05), and 4.63±0.55 vs. 3.53±0.62 at 12 weeks. There was a significant difference at these two time points between the two groups (Plt;0.05). The quantitative analysis of the newly-formed blood vessels showed that the vascular areas were 28.74%±7.81%i n the experimental group but 19.52%±4.57% in the control group at 4 weeks (Plt;0.05), and 24.66%±7.38% vs. 1784%±5.22% at 12 weeks. There was a significant difference at these two time points between the two groups (Plt;0.05). Conclusion 1,25-(OH)2 D3 as an active factor can increase the interaction between hMSO and hUVEC, and thus promote the ectopic osteogenesis and vascularization in the tissue engineered bone. 

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • Effectiveness and mechanism of pure platelet-rich plasma on osteochondral injury of talus

    Objective To explore the effectiveness and mechanism of pure platelet-rich plasma (P-PRP) on osteochondral injury of talus. Methods Thirty-six patients with osteochondral injury of talus selected between January 2014 and October 2017 according to criteria were randomly divided into control group (group A), leukocyte PRP (L-PRP) group (group B), and P-PRP group (group C), with 12 cases in each group. There was no significant difference in gender, age, disease duration, and Hepple classification among the three groups (P>0.05). Patients in the groups B and C were injected with 2.5 mL L-PRP or P-PRP at the bone graft site, respectively. Patients in the group A were not injected with any drugs. The American Orthopaedic Foot and Ankle Society (AOFAS) score and visual analogue scale (VAS) score were used to evaluate the effectiveness before operation and at 3, 6, and 12 months after operation. Study on the therapeutic mechanism of P-PRP: MC3T3-E1 cells were randomly divided into control group (group A), L-PRP group (group B), and P-PRP group (group C). Groups B and C were cultured with culture medium containing 5% L-PRP or P-PRP respectively. Group A was cultured with PBS of the same content. MTT assay was used to detect cell proliferation; ELISA was used to detect the content of matrix metalloprotein 9 (MMP-9) protein in supernatant; alkaline phosphatase (ALP) activity was measured; and real-time fluorescence quantitative PCR (qRT-PCR) was used to detect the expression of osteopontin (OPN), collagen type Ⅰ, and MMP-9 in cells. Western blot was used to detect the expression of MMP-9 in supernatant and phosphoinositide 3-kinase (PI3K), phosphorylated protein kinase B (pAKT), and phosphorylated c-Jun (p-c-Jun) in cells. ResultsAll patients were followed up 13-25 months, with an average of 18 months. No complication such as wound infection and internal fixation failure occurred. MRI showed that the degree of injury was similar between the three groups before operation, and patients in the three groups all recovered at 6 months after operation. Moreover, group C was superior to groups A and B. Compared with preoperation, AOFAS scores and VAS scores in the three groups were all significantly improved at each time point after operation (P<0.05). AOFAS score of group C was significantly higher than that of groups A and B at 3, 6, and 12 months after operation (P<0.05); there was no significant difference in VAS score between the three groups (P>0.05). Study on the therapeutic mechanism of P-PRP: The absorbance (A) value, ALP activity, the relative mRNA expression of OPN and collagen type Ⅰ in group C were significantly higher than those in groups A and B (P<0.05), and those in group B were significantly higher than those in group A (P<0.05). The relative expression of MMP-9 protein and mRNA and the content of MMP-9 protein detected by ELISA in group B were significantly higher than those in groups A and C, while those in group C were significantly lower than those in group A (P<0.05). Western blot detection showed that the relative expression of PI3K, pAKT, and p-c-Jun protein in group B was significantly higher than those in groups A and C (P<0.05), but there was no significant difference between groups A and C (P>0.05). Conclusion P-PRP is superior to L-PRP for osteochondral injury of talus, which may be related to the inhibition of PI3K/AKT/AP-1 signaling pathway in the osteoblast, thereby reducing the secretion of MMP-9.

    Release date:2019-05-06 04:48 Export PDF Favorites Scan
  • Progress in the regulation of bone remodeling at the cellular level

    Bone remodeling requires an intimate cross-talk between osteoclasts and osteoblasts and is tightly coordinated with regulatory proteins that interact through complex autocrine/paracrine processes. Osteocytes, bone lining cells, osteomacs and vascular endothelial cells also regulate bone remodeling in the basic multicellular unit (BMU) via cell signaling networks of ligand-receptor complexes. In addition, through secreted and membrane-bound factors in the bone microenvironment, T and B lymphocytes mediate bone homeostasis for osteoimmunology. Osteoporosis and other bone diseases occur because multicellular communication within the BMU is disrupted. This review focuses on the roles of the cells in the BMU and the interaction between these cells and the factors involved in regulating bone remodeling at the cellular level. Understanding the process of bone remodeling and related genes could help us to lay the foundation for drug development against bone diseases.

    Release date:2017-06-19 03:24 Export PDF Favorites Scan
  • Study on the protective effect of sodium valproic acid on carbonyl cyanide 3-chlorophenylhydrazone-induced oxidative stress injury in osteoblasts

    ObjectiveTo explore the protective effects of sodium valproic acid (VPA) on oxidative stress injury of osteoblasts induced by carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and its mechanism. Methods Osteoblasts were isolated from the skulls of 10 newborn Sprague Dawley rats and cultured by tissue block method, and the 1st generation cells were identified by alkaline phosphatase (ALP) and alizarin red staining. The 3rd generation osteoblasts were cultured with 2-18 μmol/L CCCP for 2-18 minutes, and cell counting kit 8 (CCK-8) was used to detect the cell survival rate. An appropriate inhibitory concentration and culture time were selected for the preparation of osteoblasts oxidative stress injury model based on half maximal concentration principle. The cells were cultured with 0.2- 2.0 mmol/mL VPA for 12-72 hours, and CCK-8 was used to detect cell activity, and appropriate concentration was selected for further treatment. The 3rd generation cells were randomly divided into 4 groups, including blank control group (normal cultured cells), CCCP group (the cells were cultured according to the selected appropriate CCCP concentration and culture time), VPA+CCCP group (the cells were pretreated according to the appropriate VAP concentration and culture time, and then cultured with CCCP), VPA+CCCP+ML385 group (the cells were pretreated with 10 μmol/L Nrf inhibitor ML385 for 2 hours before VPA treatment, and other treatments were the same as VPA+CCCP group). After the above treatment was complete, the cells of 4 groups were taken to detect oxidative stress indicators [reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA)], cell apoptosis rate, ALP/alizarin red staining, and the relative expressions of osteogenic related proteins [bone morphogenetic protein 2 (BMP-2), RUNX2], anti-apoptotic family protein (Bcl2), apoptotic core protein (Cleaved-Caspase-3, Bax), channel protein (Nrf2) by Western blot. Results The osteoblasts were successfully extracted. According to the results of CCK-8 assay, the oxidative stress injury model was established by 10 μmol/L CCCP cultured for 10 minutes and 0.8 mmol/mL VPA cultured for 24 hours was selected for subsequent experiments. Compared with blank control group, the activity and mineralization capacity of osteoblasts in CCCP group decreased, the contents of ROS and MDA increased, the activity of SOD decreased, and the apoptosis rate increased. Meanwhile, the relative expressions of BMP-2, RUNX2, and Bcl2 decreased, and the relative expressions of Cleaved-Caspase-3, Nrf2, and Bax increased. The differences were significant (P<0.05). After further VPA treatment, the oxidative stress damage of osteoblasts in VPA+CCCP group was relieved, and the above indexes showed a recovery trend (P<0.05). In VPA+CCCP+ML385 group, the above indexes showed an opposite trend (P<0.05), and the protective effects of VPA were reversed. Conclusion VPA can inhibit the CCCP-induced oxidative stress injury of osteoblasts and promote osteogenesis via Keap1/Nrf2/Are pathway.

    Release date:2023-03-13 08:33 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content