Objective To summarize the latest developments in neurosurgical treatments for neurofibromatosis type 1 (NF1) and explore therapeutic strategies to provide comprehensive treatment guidelines for clinicians. Methods The recent domestic and international literature and clinical cases in the field of NF1 were reviewed. The main types of neurological complications associated with NF1 and their treatments were thorough summarized and the future research directions in neurosurgery was analyzed. Results NF1 frequently results in complex and diverse lesions in the central and peripheral nervous systems, particularly low-grade gliomas in the brain and spinal canal and paraspinal neurofibromas. Treatment decisions should be made by a multidisciplinary team. Symptomatic plexiform neurofibromas and tumors with malignant imaging evidence require neurosurgical intervention. The goals of surgery include reducing tumor size, alleviating pain, and improving appearance. Postoperative functional rehabilitation exercises, long-term multidisciplinary follow-up, and psychosocial interventions are crucial for improving the quality of life for patients. Advanced imaging guidance systems and artificial intelligence technologies can help increase tumor resection rates and reduce recurrence. Conclusion Neurosurgical intervention is the primary treatment for symptomatic plexiform neurofibromas and malignant peripheral nerve sheath tumors when medical treatment is ineffective and the lesions progress rapidly. Preoperative multidisciplinary assessment, intraoperative electrophysiological monitoring, and advanced surgical assistance devices significantly enhance surgical efficacy and safety. Future research should continue to explore new surgical techniques and improve postoperative management strategies to achieve more precise and personalized treatment for NF1 patients.
Objective To explore the effect of short-term low-frequency electrical stimulation (SLES) during operation on nerve regeneration in delayed peripheral nerve injury with long gap. Methods Thirty female adult Sprague Dawley rats, weighing 160-180 g, were used to prepare 13-mm defect model by trimming the nerve stumps. Then all rats were randomly divided into 2 groups, 15 rats in each group. After nerve defect was bridged by the contralateral normal sciatic nerve, SLES was applied in the experimental group, but was not in the control group. The spinal cords and dorsal root ganglions (DRGs) were harvested to carry out immunofluorescence histochemistry double staining for growth-associated proteins 43 (GAP-43) and brain-derived neurotrophic factor (BDNF) at 1, 2, and 7 days after repair. Fluorogold (FG) retrograde tracing was performed at 3 months after repair. The mid-portion regenerated segments were harvested to perform Meyer’s trichrome staining, immunofluorescence double staining for neurofilament (NF) and soluble protein 100 (S-100) on the transversely or longitudinal sections at 3 months after repair. The segment of the distal sciatic nerve trunk was harvested for electron microscopy and morphometric analyses to measure the diameter of the myelinated axons, thickness of myelin sheaths, the G ratio, and the density of the myelinated nerve fibers. The gastrocnemius muscles of the operated sides were harvested to measure the relative wet weight ratios. Karnovsky-Root cholinesterase staining of the motor endplate was carried out. Results In the experimental group, the expressions of GAP-43 and BDNF were higher than those in the control group at 1 and 2 days after repair. The number of labeled neurons in the anterior horn of gray matter in the spinal cord and DRGs at the operated side from the experimental group was more than that from the control group. Meyer’s trichrome staining, immunofluorescence double staining, and the electron microscopy observation showed that the regenerated nerves were observed to develop better in the experimental group than the control group. The relative wet weight ratio of experimental group was significantly higher than that of the control group (t=4.633,P=0.000). The size and the shape of the motor endplates in the experimental group were better than those in the control group. Conclusion SLES can promote the regeneration ability of the short-term (1 month) delayed nerve injury with long gap to a certain extent.
Objective To explore the role and clinical significance of cell-cycle dependent kinase 1 (CDK1) and its upstream and downstream molecules in the development of malignant peripheral nerve sheath tumor (MPNST) through the analysis of clinical tissue samples. Methods A total of 56 tumor samples from MPNST patients (“Tianjin” dataset) who underwent surgical resection, confirmed by histology and pathology between September 2011 and March 2020, along with 17 normal tissue samples, were selected as the research subjects. MPNST-related hub genes were identified through transcriptome sequencing, bioinformatics analysis, immunohistochemistry staining, and survival analysis, and their expression levels and prognostic associations were analyzed. Results Transcriptome sequencing and bioinformatics analysis revealed that upregulated genes in MPNST were predominantly enriched in cell cycle-related pathways, with CDK1 occupying a central position among all differentially expressed genes. Further differential analysis demonstrated that CDK1 mRNA expression in sarcoma tissues was significantly higher than in normal tissues [based on searching the cancer genome atlas (TCGA) dataset, P<0.05]. In MPNST tissues, CDK1 mRNA expression was not only significantly higher than in normal tissues (based on Tianjin, GSE141438 datasets, P<0.05), but also significantly higher than in neurofibromatosis (NF) and plexiform neurofibromas (PNF) (based on GSE66743 and GSE145064 datasets, P<0.05). Immunohistochemical staining results indicated that the expression rate of CDK1 protein in MPNST tissues was 40.31%. Survival analysis results demonstrated that CDK1 expression was associated with poor prognosis. The survival time of MPNST patients with high CDK1 mRNA expression was significantly lower than that of the low expression group (P<0.05), and the overall survival trend of patients with positive CDK1 protein expression was worse than that of patients with negative CDK1 expression. Additionally, differential analysis of CDK family genes (CDK1-8) revealed that only CDK1 was significantly upregulated in MPNST, NF, and PNF. Conclusion Increased expression of CDK1 is associated with poor prognosis in MPNST patients. Compared to other CDK family members, CDK1 exhibits a unique expression pattern, suggesting its potential as a therapeutic target for MPNST.
ObjectiveTo investigate the effect of folic acid coated-crosslinked urethane-doped polyester elastomer (fCUPE) nerve conduit in repairing long distance peripheral nerve injury. MethodsThirty-six 3-month-old male Sprague Dawley rats weighing 180-220 g were randomly assigned to 3 groups, each consisting of 12 rats: CUPE nerve conduit transplantation group (group A), fCUPE nerve conduit transplantation group (group B), and autologous nerve transplantation group (group C), the contralateral healthy limb of group C served as the control group (group D). A 20-mm-long sciatic nerve defect model was established in rats, and corresponding materials were used to repair the nerve defect according to the group. The sciatic function index (SFI) of groups A-C was calculated using the Bain formula at 1, 2, and 3 months after operation. The nerve conduction velocity (NCV) of the affected side in groups A-D was assessed using neuroelectrophysiological techniques. At 3 months after operation, the regenerated nerve tissue was collected from groups A-C for S-100 immunohistochemical staining and Schwann cell count in groups A and B to compare the level of nerve repair and regeneration in each group. ResultsAt 3 months after operation, the nerve conduits in all groups partially degraded. There was no significant adhesion between the nerve and the conduit and the surrounding tissues, the conduit was well connected with the distal and proximal nerves, and the nerve-like tissues in the conduit could be observed when the nerve conduit stents were cut off. SFI in group A was significantly higher than that in group C at each time point after operation and was significantly higher than that in group B at 2 and 3 months after operation (P<0.05). There was no significant difference in SFI between groups B and C at each time point after operation (P>0.05). NCV in group A was significantly slower than that in the other 3 groups at each time point after operation (P<0.05). The NCV of groups B and C were slower than that of group D, but the difference was significant only at 1 month after operation (P<0.05). There was no significant difference between groups B and C at each time point after operation (P>0.05). Immunohistochemical staining showed that the nerve tissue of group A had an abnormal cavo-like structure, light tissue staining, and many non-Schwann cells. In group B, a large quantity of normal neural structures was observed, the staining was deeper than that in group A, and the distribution of dedifferentiated Schwann cells was obvious. In group C, the nerve bundles were arranged neatly, and the tissue staining was the deepest. The number of Schwann cells in group B was (727.50±57.60) cells/mm2, which was significantly more than that in group A [(298.33±153.12) cells/mm2] (t=6.139, P<0.001). ConclusionThe fCUPE nerve conduit is effective in repairing long-distance sciatic nerve defects and is comparable to autologous nerve grafts. It has the potential to be used as a substitute material for peripheral nerve defect transplantation.
ObjectiveTo describe the research progress of silk-based biomaterials in peripheral nerve repair and provide useful ideals to accelerate the regeneration of large-size peripheral nerve injury. Methods The relative documents about silk-based biomaterials used in peripheral nerve regeneration were reviewed and the different strategies that could accelerate peripheral nerve regeneration through building bioactive microenvironment with silk fibroin were discussed. Results Many silk fibroin tissue engineered nerve conduits have been developed to provide multiple biomimetic microstructures, and different microstructures have different mechanisms of promoting nerve repair. Biomimetic porous structures favor the nutrient exchange at wound sites and inhibit the invasion of scar tissue. The aligned structures can induce the directional growth of nerve tissue, while the multiple channels promote the axon elongation. When the fillers are introduced to the conduits, better growth, migration, and differentiation of nerve cells can be achieved. Besides biomimetic structures, different nerve growth factors and bioactive drugs can be loaded on silk carriers and released slowly at nerve wounds, providing suitable biochemical cues. Both the biomimetic structures and the loaded bioactive ingredients optimize the niches of peripheral nerves, resulting in quicker and better nerve repair. With silk biomaterials as a platform, fusing multiple ways to achieve the multidimensional regulation of nerve microenvironments is becoming a critical strategy in repairing large-size peripheral nerve injury. Conclusion Silk-based biomaterials are useful platforms to achieve the design of biomimetic hierarchical microstructures and the co-loading of various bioactive ingredients. Silk fibroin nerve conduits provide suitable microenvironment to accelerate functional recovery of peripheral nerves. Different optimizing strategies are available for silk fibroin biomaterials to favor the nerve regeneration, which would satisfy the needs of various nerve tissue repair. Bioactive silk conduits have promising future in large-size peripheral nerve regeneration.
ObjectiveTo review the literature on the research status of vascularization of tissue engineered peripheral nerve so as to provide the theoretical basis for the vascularization of tissue engineered peripheral nerve.MethodsThe literature related to the vascularization of peripheral nerve tissue engineering in recent years was reviewed and summarized according to the five aspects of promoting vascularization: local microenvironment and blood supply characteristics of peripheral nerve regeneration, scaffold material modification, seed cells, autologous vascular bundle implantation, and pro-vascular factors.ResultsTissue engineered peripheral nerve has brought a new hope for the repair of peripheral nerve injury, but the repair effect of large nerve defects is not good, which is mainly related to the degree of vascularization of the nerve grafts. So it is particularly important to promote the early vascularization of tissue engineered peripheral nerve. Previous studies have mainly focused on the four aspects of scaffold material modification, seed cells, autologous vascular bundle implantation, and angiogenesis related factors. Recent studies show that the combination of the above two or more factors in the tissue engineered peripheral nerves can better promote the vascularization of tissue engineered peripheral nerves.ConclusionPromoting early vascularization of tissue engineered peripheral nerves can provide timely nutritional support for seed cells on the scaffold, promote axon growth and nerve regeneration, and facilitate the repair of large peripheral nerve defects in clinical practice.
ObjectiveTo review recent research progress in the use of auxiliary components of nerve conduits for the treatment of peripheral nerve injuries. MethodsAn extensive review of recent domestic and international literature was conducted to evaluate the role of auxiliary components in nerve conduits for peripheral nerve repair, with a focus on their effects and underlying mechanisms. ResultsBy incorporating auxiliary components such as bioactive molecules, therapeutic cells, and their derivatives, nerve conduits can create a more biomimetic regenerative microenvironment. This is achieved by providing neurotrophic support, modulating the immune microenvironment, improving blood and oxygen supply, and offering directional guidance for nerve regeneration. Consequently, the nerve conduit is transformed from a simple physical scaffold into an active, bio-functional repair system, which enhances the effectiveness for PNI. ConclusionWhile nerve conduits augmented with auxiliary components demonstrate improved effectiveness, further advancements are required in drug delivery systems and the integration of cellular components. Moreover, most current studies are based on animal or in vitro experiments. Randomized controlled clinical trials are necessary to validate their clinical effectiveness.
Objective To summarize application effect and clinical experience of multimodal intraoperative neurophysiological monitoring (IONM) technology in the surgery of neurofibromatosis type 1 (NF1) related peripheral nerve tumors. Methods A retrospective study was conducted on NF1 patients, who admitted between January 2019 and December 2023 and treated with peripheral nerve tumor resection surgery assisted by multimodal IONM technology. There were 49 males and 45 females. The age ranged from 5 to 78 years, with an average of 33.7 years. Tumor morphological classification included 71 cases of nodular type, 13 cases of diffuse type, and 10 cases of mixed type. Target tumors were distributed in craniofacial region (47 cases), neck (11 cases), trunk (12 cases), and limbs (24 cases). Preoperatively, 44 cases had no obvious neurological symptoms, while the remaining patients had neurological symptoms, including 15 cases of visual impairment, 5 cases of hearing impairment, 16 cases of somatic movement disorders, and 31 cases of somatic sensory disorders, of which 7 cases had more than one symptom. IONM plans were selected based on the relevant nerves and adjacent important structures of the target tumor, including visual evoked potential (17 cases), somatosensory evoked potential (44 cases), motor evoked potential (88 cases), and electromyogram (94 cases).Results All surgeries were successfully completed. Ninety-three patients underwent total/near total resection and 1 patient underwent palliative resection. Pathological examination showed 80 cases of neurofibroma and 14 cases of malignant peripheral nerve sheath tumors. Complications included 2 cases of hematoma and 3 cases of incision infection. All patients were followed up 3-61 months (median, 15 months). During follow-up, no significant changes in neurological symptoms or tumor recurrence were found. Among the patients with preoperative visual impairment, there were 14 cases with no improvement in symptoms and 1 with improvement after surgery. Among the patients with somatic movement disorders, there were 11 cases with no improvement in symptoms, 3 cases with improvement, 2 cases with aggravation, 4 newly onset cases, and 1 case with significant impact on daily life after surgery. Among the patients with somatic sensory disorders, there were 17 cases with no improvement in symptoms, 14 cases with improvement, and 13 newly onset cases. The patients with hearing impairment showed improvement after surgery. Conclusion The clinical manifestations of NF1 related peripheral nerve tumors are complex. Multimodal IONM technology can provide real-time detection of nerve provocation and damage. Surgical treatment with multimodal IONM technology is safe and can reduce complications.
Schwanns cell (SC) was isolated from sciatic nerve of adult rat with Wallerine degeneration. After culture, SC-serum free culture media (SCSFCM) was obtained. By ultrafiltration with PM-10 Amicon Membrane, electrophoresis with DiscPAGE,and electrical wash-out with Biotrap apparatus, D-band protein was isolated from the SC-SFCM. The D-band protein in the concentration of 25ng/ml could affect the survival of the spinal anterior horn neuron in vitro, prominently and itsactivity was not changed after being frozen. The molecular weight of the protein ranged from 43 to 67 Kd. The D-band protein might be a neurotrophic substancedifferent from the known SCderived neurotrophic factors (NTF). Its concentration with biological activity was high enough to be detected. The advantages of MTT in assessment of NTF activity were also discussed.
ObjectiveTo investigate the effects of exosomes from adipose-derived stem cells (ADSCs) on peripheral nerve regeneration, and to find a new treatment for peripheral nerve injury. MethodsThirty-six adult Sprague Dawley (SD) rats (male or female, weighing 220-240 g) were randomly divided into 3 groups (n=12). Group A was the control group; group B was sciatic nerve injury group; group C was sciatic nerve injury combined with exosomes from ADSCs treatment group. The sciatic nerve was only exposed without injury in group A, and the sciatic nerve crush injury model was prepared in groups B and C. The SD rats in groups A and B were injected with PBS solution of 200 μL via tail veins; the SD rats in group C were injected with pure PBS solution of 200 μL containing 100 μg exosomes from ADSCs, once a week and injected for 12 weeks. At 1 week after the end of the injection, the rats were killed and the sciatic nerves were taken at the part of injury. The sciatic nerve fiber bundles were observed by HE staining; the SCs apoptosis of the sciatic nerve tissue were detected by TUNEL staining; the ultrastructure and SCs autophagy of the sciatic nerve were observed by transmission electron microscope. ResultsGross observation showed that there was no obvious abnormality in the injured limbs of group A, but there were the injured limbs paralysis and muscle atrophy in groups B and C, and the degree of paralysis and muscle atrophy in group C were lighter than those in group B. HE staining showed that the perineurium of group A was regular; the perineurium of group B was irregular, and there were a lot of cell-free structures and tissue fragments in group B; the perineurium of group C was more complete, and significantly well than that of group B. TUNEL staining showed that the SCs apoptosis was significantly increased in groups B and C than in group A, in group B than in group C (P<0.01). Transmission electron microscope observation showed that the SCs autophagosomes in groups B and C were significantly increased than those in group A, but the autophagosomes in group C were significantly lower than those in group B. ConclusionThe exosomes from ADSCs can promote the peripheral nerve regeneration. The mechanism may be related to reducing SCs apoptosis, inhibiting SCs autophagy, and reducing nerve Wallerian degeneration.