west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "prediction" 181 results
  • Research progress of diagnosis and prediction system of stroke based on artificial intelligence

    As a kind of disease with high incidence rate, high mortality, high recurrence rate and high disability rate, stroke has become one of the most serious disease burdens in China. Rapid diagnosis and treatment of stroke can effectively improve the outcome of patients and reduce the psychological and economic burden of patients’ families and society. In recent years, with the rapid development of artificial intelligence technology,this technology can effectively improve daily diagnosis and treatment efficiency. This paper focuses on the application of artificial intelligence technology to the diagnosis, treatment and outcome prediction of stroke, aiming to provide ideas for further guiding precision medicine.

    Release date:2023-01-16 09:48 Export PDF Favorites Scan
  • Advances in predictive model of surgical site infection following colorectal cancer surgery

    ObjectiveTo evaluate existing predictive models for surgical site infection (SSI) following colorectal cancer (CRC) surgery, aiming to provide a scientific basis for refining risk prediction models and developing clinically practical and widely applicable screening tools. MethodA comprehensive review of existing literature on predictive models for SSI following CRC surgery, both domestically and internationally, were conducted. ResultsThe determination of SSI following CRC surgery primarily relied on the Centers for Disease Control and Prevention standard of USA, which presented issues of consistency and accuracy. Various predictive models had been developed, including traditional statistical models and machine learning models, with 0.991 of an area under the operating characteristic curve of predictive model. However, most studies were based on retrospective and single-center data, which limited their applicability and accuracy. ConclusionsAlthough existing models provide strong support for predicting SSI following CRC surgery, there is a need for multi-center, prospective studies to enhance the generalizability and accuracy of these models. Additionally, future research should focus on improving model interpretability to better apply them in clinical practice, providing personalized risk assessments and intervention strategies for patients.

    Release date:2025-06-23 03:12 Export PDF Favorites Scan
  • Predictive analysis of delirium risk in ICU patients with cardiothoracic surgery by ensemble classification algorithm of random forest

    ObjectiveTo analyze the predictive value of ensemble classification algorithm of random forest for delirium risk in ICU patients with cardiothoracic surgery. MethodsA total of 360 patients hospitalized in cardiothoracic ICU of our hospital from June 2019 to December 2020 were retrospectively analyzed. There were 193 males and 167 females, aged 18-80 (56.45±9.33) years. The patients were divided into a delirium group and a control group according to whether delirium occurred during hospitalization or not. The clinical data of the two groups were compared, and the related factors affecting the occurrence of delirium in cardiothoracic ICU patients were predicted by the multivariate logistic regression analysis and the ensemble classification algorithm of random forest respectively, and the difference of the prediction efficiency between the two groups was compared.ResultsOf the included patients, 19 patients fell out, 165 patients developed ICU delirium and were enrolled into the delirium group, with an incidence of 48.39% in ICU, and the remaining 176 patients without ICU delirium were enrolled into the control group. There was no statistical significance in gender, educational level, or other general data between the two groups (P>0.05). But compared with the control group, the patients of the delirium group were older, length of hospital stay was longer, and acute physiology and chronic health evaluationⅡ(APACHEⅡ) score, proportion of mechanical assisted ventilation, physical constraints, sedative drug use in the delirium group were higher (P<0.05). Multivariate logistic regression analysis showed that age (OR=1.162), length of hospital stay (OR=1.238), APACHEⅡ score (OR=1.057), mechanical ventilation (OR=1.329), physical constraints (OR=1.345) and sedative drug use (OR=1.630) were independent risk factors for delirium of cardiothoracic ICU patients. The variables in the random forest model for sorting, on top of important predictor variable were: age, length of hospital stay, APACHEⅡ score, mechanical ventilation, physical constraints and sedative drug use. The diagnostic efficiency of ensemble classification algorithm of random forest was obviously higher than that of multivariate logistic regression analysis. The area under receiver operating characteristic curve of ensemble classification algorithm of random forest was 0.87, and the one of multivariate logistic regression analysis model was 0.79.ConclusionThe ensemble classification algorithm of random forest is more effective in predicting the occurrence of delirium in cardiothoracic ICU patients, which can be popularized and applied in clinical practice and contribute to early identification and strengthening nursing of high-risk patients.

    Release date:2022-07-28 10:21 Export PDF Favorites Scan
  • Scoping review of sarcopenia risk prediction models in China

    Objective To scoping review the risk prediction models for sarcopenia in China was conducted, and provide reference for scientific prevention and treatment of the disease and related research. Methods We systematically searched PubMed, Web of Science, Cochrane Library, Embase, China Knowledge Network, China Biomedical Literature Database, Wanfang Database, and Weipu Database for literature related to myasthenia gravis prediction models in China, with a time frame from the construction of the database to April 30, 2024 for the search. The risk of bias and applicability of the included literature were assessed, and information on the construction of myasthenia gravis risk prediction models, model predictors, model presentation form and performance were extracted. Results A total of 25 literatures were included, the prevalence of sarcopenia ranged from 12.16% to 54.17%, and the study population mainly included the elderly, the model construction methods were categorized into two types: logistic regression model and machine learning, and age, body mass index, and nutritional status were the three predictors that appeared most frequently. Conclusion Clinical caregivers should pay attention to the high-risk factors for the occurrence of sarcopenia, construct models with accurate predictive performance and high clinical utility with the help of visual model presentation, and design prospective, multicenter internal and external validation methods to continuously improve and optimize the models to achieve the best predictive effect.

    Release date:2025-08-26 09:30 Export PDF Favorites Scan
  • Research progress on risk prediction models of postoperative pulmonary complications after lung cancer surgery

    Risk prediction models for postoperative pulmonary complications (PPCs) can assist healthcare professionals in assessing the likelihood of PPCs occurring after surgery, thereby supporting rapid decision-making. This study evaluated the merits, limitations, and challenges of these models, focusing on model types, construction methods, performance, and clinical applications. The findings indicate that current risk prediction models for PPCs following lung cancer surgery demonstrate a certain level of predictive effectiveness. However, there are notable deficiencies in study design, clinical implementation, and reporting transparency. Future research should prioritize large-scale, prospective, multi-center studies that utilize multiomics approaches to ensure robust data for accurate predictions, ultimately facilitating clinical translation, adoption, and promotion.

    Release date:2025-01-21 11:07 Export PDF Favorites Scan
  • Construction and validation of predictive model for critical illness patients in emergency department with influenza in early stages

    Objective To establish and verify the early prediction model of critical illness patients with influenza. Methods Critical illness patients with influenza who diagnosed with influenza in the emergency departments from West China Hospital of Sichuan University, Shangjin Hospital of West China Hospital of Sichuan University, and Panzhihua Central Hospital between January 1, 2017 and June 30, 2020 were selected. According to K-fold cross validation method, 70% of patients were randomly assigned to the model group, and 30% of patients were assigned to the model verification group. The patients in the model group and the model verification group were divided into the critical illness group and the non-critical illness group, respectively. Based on the modified National Early Warning Score (MEWS) and the Simplified British Thoracic Society Score (confusion, uremia, respiratory, BP, age 65 years, CRB-65 score), a critical illness influenza early prediction model was constructed and its accuracy was evaluated. Results A total of 612 patients were included. Among them, there were 427 cases in the model group and 185 cases in the model verification group. In the model group, there were 304 cases of non-critical illness and 123 cases of critical illness. In the model verification group, there were 152 cases of non-critical illness and 33 cases of critical illness. The results of binary logistic regression analysis showed that age, hypertension, the number of days between the onset of symptoms and presentation at the emergency department, consciousness state, white blood cell count, and lymphocyte count, oxygen saturation of blood were the independent risk factors for critical illness influenza. Based on these 7 risk factors, an early prediction model for critical illness influenza was established. The correct percentages of the model for non-critical illness and critical illness patients were 95.4% and 77.2%, respectively, with an overall correct prediction percentage of 90.2%. The results of the receiver operator characteristic curve showed that the sensitivity and specificity of the early prediction model for critical illness influenza in predicting critical illness patients were 0.909, 0.921, and the area under the curve and its 95% confidence interval were 0.931 (0.860, 0.999). The sensitivity, specificity, and area under the curve (0.935, 0.865, 0.942) of the early prediction model for critical illness influenza were higher than those of MEWS (0.642, 0.595, 0.536) and CRB-65 (0.628, 0.862, 0.703). Conclusions The conclusion is that age, hypertension, the number of days between the onset of symptoms and presentation at the emergency department, consciousness, oxygen saturation, white blood cell count, and absolute lymphocyte count are independent risk factors for predicting severe influenza cases. The early prediction model for critical illness patients with influenza has high accuracy in predicting severe influenza cases, and its predictive value and accuracy are superior to those of the MEWS score and CRB-65 score.

    Release date:2024-09-23 01:22 Export PDF Favorites Scan
  • Evaluation of daily number of new ischemic stroke cases in a hospital in Chengdu based on machine learning and meteorological factors

    Objective To evaluate the predictive effect of three machine learning methods, namely support vector machine (SVM), K-nearest neighbor (KNN) and decision tree, on the daily number of new patients with ischemic stroke in Chengdu. Methods The numbers of daily new ischemic stroke patients from January 1st, 2019 to March 28th, 2021 were extracted from the Third People’s Hospital of Chengdu. The weather and meteorological data and air quality data of Chengdu came from China Weather Network in the same period. Correlation analyses, multinominal logistic regression, and principal component analysis were used to explore the influencing factors for the level of daily number of new ischemic stroke patients in this hospital. Then, using R 4.1.2 software, the data were randomly divided in a ratio of 7∶3 (70% into train set and 30% into validation set), and were respectively used to train and certify the three machine learning methods, SVM, KNN and decision tree, and logistic regression model was used as the benchmark model. F1 score, the area under the receiver operating characteristic curve (AUC) and accuracy of each model were calculated. The data dividing, training and validation were repeated for three times, and the average F1 scores, AUCs and accuracies of the three times were used to compare the prediction effects of the four models. Results According to the accuracies from high to low, the prediction effects of the four models were ranked as SVM (88.9%), logistic regression model (87.5%), decision tree (85.9%), and KNN (85.1%); according to the F1 scores, the models were ranked as SVM (66.9%), KNN (62.7%), decision tree (59.1%), and logistic regression model (57.7%); according to the AUCs, the order from high to low was SVM (88.5%), logistic regression model (87.7%), KNN (84.7%), and decision tree (71.5%). Conclusion The prediction result of SVM is better than the traditional logistic regression model and the other two machine learning models.

    Release date:2023-02-14 05:33 Export PDF Favorites Scan
  • Risk prediction model for acute exacerbation of chronic obstructive pulmonary disease: a systematic review

    Objective To systematically evaluate risk prediction models for acute exacerbation of chronic obstructive pulmonary disease (COPD), and provide a reference for early clinical identification. Methods The literature on the risk prediction models of acute exacerbation of COPD published by CNKI, VIP, Cochrane, Embase and Web of Science database was searched in Chinese and English from inception to April 2022, and relevant studies were collected on the development of risk prediction models for acute exacerbations of COPD. After independent screening of the literature and extraction of information by two independent researchers, the quality of the included literature was evaluated using the PROBASTA tool. Results Five prospective studies, one retrospective case-control study and seven retrospective cohort studies were included, totally 13 papers containing 24 models. Twelve studies (92.3%) reported the area under the receiver operator characteristic curve ranging 0.66 to 0.969. Only five studies reported calibrated statistics, and three studies were internally and externally validated. The overall applicability of 13 studies was good, but there was a high risk of bias, mainly in the area of analysis. Conclusions The existing predictive risk models for acute exacerbations of COPD are unsatisfactory, with wide variation in model performance, inappropriate and incomplete inclusion of predictors, and a need for better ways to develop and validate high-quality predictive models. Future research should refine the study design and study report, and continue to update and validate existing models. Secondly medical staff should develop and implement risk stratification strategies for acute exacerbations of COPD based on predicted risk classification results in order to reduce the frequency of acute exacerbations and to facilitate the rational allocation of medical resources.

    Release date: Export PDF Favorites Scan
  • Current status of research on models for predicting acute kidney injury following cardiac surgery

    Acute kidney injury (AKI) is a complication with high morbidity and mortality after cardiac surgery. In order to predict the incidence of AKI after cardiac surgery, many risk prediction models have been established worldwide. We made a detailed introduction to the composing features, clinical application and predictive capability of 14 commonly used models. Among the 14 risk prediction models, age, congestive heart failure, hypertension, left ventricular ejection fraction, diabetes, cardiac valve surgery, coronary artery bypass grafting (CABG) combined with cardiac valve surgery, emergency surgery, preoperative creatinine, preoperative estimated glomerular filtration rate (eGFR), preoperative New York Heart Association (NYHA) score>Ⅱ, previous cardiac surgery, cadiopulmonary bypass (CPB) time and low cardiac output syndrome (LCOS) are included in many risks prediction models (>3 times). In comparison to Mehta and SRI models, Cleveland risk prediction model shows the best discrimination for the prediction of renal replacement therapy (RRT)-AKI and AKI in the European. However, in Chinese population, the predictive ability of the above three risk prediction models for RRT-AKI and AKI is poor.

    Release date:2018-03-05 03:32 Export PDF Favorites Scan
  • Research advances in positron emission tomography-computed tomography for etiological diagnosis, epileptogenic focus localization, and prognostic prediction of epilepsy treatment

    Epilepsy is a clinical syndrome characterized by recurrent epileptic seizures caused by various etiologies. Etiological diagnosis and localization of the epileptogenic focus are of great importance in the treatment of epilepsy. Positron emission tomography-computed tomography (PET-CT) technology plays a significant role in the etiological diagnosis and localization of the epileptogenic focus in epilepsy. It also guides the treatment of epilepsy, predicts the prognosis, and helps physicians intervene earlier and improve the quality of life of patients. With the continuous development of PET-CT technology, more hope and better treatment options will be provided for epilepsy patients. This article will review the guiding role of PET-CT technology in the diagnosis and treatment of epilepsy, providing insights into its application in etiological diagnosis, preoperative assessment of the condition, selection of treatment plans, and prognosis of epilepsy.

    Release date:2024-03-07 01:49 Export PDF Favorites Scan
19 pages Previous 1 2 3 ... 19 Next

Format

Content