ObjectiveTo explore the application value of CT-guided microcoil localization in pulmonary nodule (diameter≤15 mm) surgery.MethodsThe clinical data of 175 patients with pulmonary nodules who underwent single utility port video-assisted thoracoscopic surgery at Nanjing Drum Tower Hospital from August 2018 to December 2019 were retrospectively analyzed. According to whether CT-guided coil localization was performed before operation, they were divided into a locating group and a non-locating group. There were 84 patients (34 males, 50 females, aged 57.8±8.8 years) in the locating group and 91 patients (46 males, 45 females, aged 57.6±10.8 years) in the non-locating group. The localization success rate, localization time, incidence of complications, surgical and postoperative conditions were analyzed between the two groups.ResultsAll 84 patients in the locating group were successfully located, and localization time was 19.0±3.6 minutes. Among them, 19 (22.6%) patients had a small pneumothorax, 4 (4.8%) pulmonary hemorrhage and 2 (2.4%) coil shift; 6 (7.1%) patients had mild pain, 3 (3.6%) moderate pain and 1 (1.2%) severe pain. Sex (P=0.181), age (P=0.673), nodule location (P=0.167), nature of lesion (P=0.244), rate of conversion to thoracotomy (P=0.414), rate of disposable resection of nodules (P=0.251) and postoperative hospital stay (P=0.207) were similar between the two groups. There were significant differences in nodule size (P<0.001), nature of nodule (P<0.001), the shortest distance from nodule to pleura (P<0.001), operation time (P<0.001), lung volume by wedge resection (P=0.031), number of staplers (P<0.001) and total hospitalization costs (P<0.001) between the two groups.ConclusionCT-guided microcoil localization has the characteristics of high success rate, and is simple, practicable, effective, safe and minimally invasive. Preoperative CT-guided microcoil localization has important clinical application value for small pulmonary nodules, especially those with small size, deep location and less solid components. It can effectively shorten the operation time, reduce surgical trauma and lower hospitalization costs, which is a preoperative localization technique worthy of popularization.
ObjectiveTo explore the safety and feasibility of 3D precise localization based on anatomical markers in the treatment of pulmonary nodules during video-assisted thoracoscopic surgery (VATS).MethodsFrom June 2019 to April 2015, 27 patients with pulmonary nodules underwent VATS in our Hospital were collected in the study, including 3 males and 24 females aged 51.8±13.7 years. The surgical data were retrospectively reviewed and analyzed, such as localization time, localization accuracy rate, pathological results, complication rate and postoperative hospital stay.ResultsA total of 28 pulmonary nodules were localized via this method. All patients received surgery successfully. No mortality or major morbidity occurred. The general mean localization time was 17.6±5.8 min, with an accuracy of 96.4%. The mean diameter of pulmonary nodules was 14.0±8.0 mm with a mean distance from visceral pleura of 6.5±5.4 mm. There was no localization related complication. The mean postoperative hospital stay was 6.7±4.3 d. The routine pathological result showed that 78.6% of the pulmonary nodules were adenocarcinoma.Conclusion3D precise localization based on anatomical markers in the treatment of pulmonary nodules during thoracoscopic surgery is accurate, safe, effective, economical and practical, and it is easy to master with a short learning curve.
Objective To explore the clinical value of artificial intelligence (AI) quantitative parameters in distinguishing pathological grades of stageⅠ invasive adenocarcinoma (IAC). Methods Clinical data of patients with clinical stageⅠ IAC admitted to Yantaishan Hospital Affiliated to Binzhou Medical University from October 2018 to May 2023 were retrospectively analyzed. Based on the 2021 WHO pathological grading criteria for lung adenocarcinoma, IAC was divided into gradeⅠ, grade Ⅱ, and grade Ⅲ. The differences in parameters among the groups were compared, and logistic regression analysis was used to evaluate the predictive efficacy of AI quantitative parameters for grade Ⅲ IAC patients. Parameters were screened using least absolute shrinkage and selection operator (LASSO) regression analysis. Three machine learning models were constructed based on these parameters to predict grade Ⅲ IAC and were internally validated to assess their efficacy. Nomograms were used for visualization. ResultsA total of 261 IAC patients were included, including 101 males and 160 females, with an average age of 27-88 (61.96±9.17) years. Six patients had dual primary lesions, and different lesions from the same patient were analyzed as independent samples. There were 48 patients of gradeⅠ IAC, 89 patients of grade Ⅱ IAC, and 130 patients of grade Ⅲ IAC. There were statitical differences in the AI quantitive parameters such as consolidation/tumor ratio (CTR), ect among the three goups. (P<0.05). Univariate analysis showed that the differences in all variables except age were statistically significant (P<0.05) between the group gradeⅠ+grade Ⅱand the group grade Ⅲ . Multivariate analysis suggested that CTR and CT standard deviation were independent risk factors for identifying grade Ⅲ IAC, and the two were negatively correlated. Grade Ⅲ IAC exhibited advanced TNM staging, more pathological high-risk factors, higher lymph node metastasis rate, and higher proportion of advanced structure. CTR was positively correlated with the proportion of advanced structures in all patients. This correlation was also observed in grade Ⅲ but not in gradeⅠand grade ⅡIAC. CTR and CT median value were selected by using LASSO regression. Logistic regression, random forest, and XGBoost models were constructed and validated, among which, the XGBoost model demonstrated the best predictive performance. Conclusion Cautious consideration should be given to grade Ⅲ IAC when CTR is higher than 39.48% and CT standard deviation is less than 122.75 HU. The XGBoost model based on combined CTR and CT median value has good predictive efficacy for grade Ⅲ IAC, aiding clinicians in making personalized clinical decisions.
Objective To evaluate the value of incremental dynamic enhanced computer tomography (CT) in diagnosis of solitary pulmonary nodules (SPN). Methods The data of 42 cases with SPN who had undergone pulmonary lobectomy were collected retrospectively to find the relationship between character of preoperative dynamic enhanced CT image and postoperative pathologic result. Results All bronchogenic carcinoma showed significant enhancement after intravenous 100 ml iodinated contrast material. The average degree of enhancement of bronchogenic carcinoma during the time 85s and 135s after infusion was significantly different from that of tuberculoma and other benign lesions(Plt;0.05). Conclusion Dynamic enhanced CT is valuable in identifying the malignant nodules from benign nodules. Emphasis should be paid to the lymph nodes in the relative field with dynamic enhanced CT, which is beneficial to the diagnosis of SPN and it is an important predictor of the result of surgical treatment.
The coming out of electromagnetic navigation bronchoscopy gives exciting solution for diagnosis and even treatment of peripheral pulmonary nodules. It breaks the barriers of traditional bronchoscopy, and gives live visible imaging guidance for operators during biopsy of peripheral pulmonary nodules. The electromagnetic navigation bronchoscopy system can intelligently recognize and reconstruct the bronchial tree of the patients, and generate visible data and virtual guidance for the operators. It can perceive real-time magnetic localization of the signal, so as to precisely guide the navigational or biopsy tools. This review introduced the artificial intelligence configuration of the electromagnetic navigation bronchoscopy system based on the Veran system, and gave some improvement advices based on the defects of the system. In this way, we hope to promote the development and better clinical application of electromagnetic navigation bronchoscopy system.
In order to optimize the postoperative rehabilitation path of patients undergoing fourth-level day surgery, West China Hospital of Sichuan University has learned from the abroad “recovery hotel” mode and innovatively regarded the primary rehabilitation institution as an extended service carrier for thoracoscopic lung nodule day surgery. This extended rehabilitation mode based on primary rehabilitation institutions is not only beneficial for shortening the hospitalization period and reducing medical costs, but also ensures medical safety through a standardized postoperative monitoring system, providing innovative solutions for the full process management of day surgeries. This article will introduce the specific implementation methods and preliminary practical results of the extended rehabilitation mode mentioned above.
Increasing peripheral pulmonary nodules are detected given the growing adoption of chest CT screening for lung cancer. The invention of electromagnetic navigation bronchoscope provides a new diagnosis and treatment method for pulmonary nodules, which has been demonstrated to be feasible and safe, and the technique of microwave ablation through bronchus is gradually maturing. The one-stop diagnosis and treatment of pulmonary nodules can be completed by the combination of electromagnetic navigation bronchoscopy and microwave ablation, which will help achieve local treatment through the natural cavity without trace.
ObjectiveTo compare the clinical application of empirical thoracoscopic segmentectomy and precise segmentectomy planned by artificial intelligence software, and to provide some reference for clinical segmentectomy. MethodsA retrospective analysis was performed on the patients who underwent thoracoscopic segmentectomy in our department from 2019 to 2022. The patients receiving empirical thoracoscopic segmentectomy from January 2019 to September 2021 were selected as a group A, and the patients receiving precise segmentectomy from October 2021 to December 2022 were selected as a group B. The number of preoperative Hookwire positioning needle, proportion of patients meeting oncology criteria, surgical time, intraoperative blood loss, postoperative chest drainage time, postoperative hospital stay, and number of patients converted to thoracotomy between the two groups were compared. Results A total of 322 patients were collected. There were 158 patients in the group A, including 56 males and 102 females with a mean age of 56.86±8.82 years, and 164 patients in the group B, including 55 males and 109 females with a mean age of 56.69±9.05 years. All patients successfully underwent thoracoscopic segmentectomy, and patients whose resection margin did not meet the oncology criteria were further treated with extended resection or even lobectomy. There was no perioperative death. The number of positioning needles used for segmentectomy in the group A was more than that in the group B [47 (29.7%) vs. 9 (5.5%), P<0.001]. There was no statistical difference in the number of positioning needles used for wedge resection between the two groups during the same period (P=0.572). In the group A, the nodule could not be found in the resection target segment in 3 patients, and the resection margin was insufficient in 10 patients. While in the group B, the nodule could not be found in 1 patient, and the resection margin was insufficient in 3 patients. There was a statistical difference between the two groups [13 (8.2%) vs. 4 (2.4%), P=0.020]. There was no statistical difference between the two groups in terms of surgical time, intraoperative blood loss, duration of postoperative thoracic drainage, postoperative hospital stay, or conversion to open chest surgery (P>0.05). Conclusion Preoperative surgical planning performed with the help of artificial intelligence software can effectively guide the completion of thoracoscopic anatomical segmentectomy. It can effectively ensure the resection margin of pulmonary nodules meeting the oncological requirements and significantly reduce the number of positioning needles of pulmonary nodules.
Objective To investigate the risk factors, diagnosis and treatment of solitary pulmonary nodule (diameter≤3cm). Methods From Jan. 2001 to Dec. 2002, the clinical data of 297 patients with solitary pulmonary nodule were reviewed. Chi-square or t-test were used in univariate analysis of age, gender, symptom, smoking history, the size, location and radiological characteristics of nodule, and logistic regression in multivariate analysis. Results Univariate analysis revealed that malignancy was significantly associated with age (P=0. 000), smoking history (P=0. 001), the size (P=0. 000) and radiological characteristics (P=0. 000) of nodule. In multivariate analysis (logistic regression), it was significantly associated with age (OR = 1. 096), the size (OR = 2. 329) and radiological characteristics (OR=0. 167) of nodule. Conclusion Age and the size of nodule could be risk factors. Radiological findings could help distinguish from malignant nodules.
ObjectiveTo investigate the clinical efficacy of preoperative location of pulmonary nodules guided by electromagnetic navigation bronchoscopy (ENB). MethodsPatients who received preoperative ENB localization and then underwent surgery from March 2021 to November 2022 in the Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine were collected. The clinical efficacy and safety of ENB localization and the related factors that may affect the success of ENB localization were analyzed. ResultsInitially 200 patients were included, among whom 17 undergoing preoperative localization and biopsy were excluded and a total of 183 patients and 230 nodules were finally included. There were 62 males and 121 females with a mean age of 49.16±12.50 years. The success rate of navigation was 88.7%, and the success rate of ENB localization was 67.4%. The rate of complications related to ENB localization were 2.7%, and the median localization time was 10 (7, 15) min. Multi-variable analysis showed that factors related to successful localization included distance from localization site (OR=0.27, 95%CI 0.13-0.59, P=0.001), staining material (OR=0.40, 95%CI 0.17-0.95, P=0.038), and staining dose (OR=60.39, 95%CI 2.31-1 578.47, P=0.014). Conclusion ENB-guided preoperative localization of pulmonary nodules is safe and effective, and the incidence of complications is low, which can be used to effectively assist the diagnosis and treatment of early lung cancer.