Pulmonary adenocarcinoma in situ is reclassified as precursor glandular lesions in the fifth edition of WHO classification of thoracic tumours, causing widespread attention and heated debate among domestic thoracic oncologists, radiologists, pathologists and surgeons. We would like to comment on the topic and make a few suggestions on the management of pulmonary nodule during lung cancer screening. We are open to all suggestion and welcome debates.
ObjectiveTo explore the application value of CT-guided microcoil localization in pulmonary nodule (diameter≤15 mm) surgery.MethodsThe clinical data of 175 patients with pulmonary nodules who underwent single utility port video-assisted thoracoscopic surgery at Nanjing Drum Tower Hospital from August 2018 to December 2019 were retrospectively analyzed. According to whether CT-guided coil localization was performed before operation, they were divided into a locating group and a non-locating group. There were 84 patients (34 males, 50 females, aged 57.8±8.8 years) in the locating group and 91 patients (46 males, 45 females, aged 57.6±10.8 years) in the non-locating group. The localization success rate, localization time, incidence of complications, surgical and postoperative conditions were analyzed between the two groups.ResultsAll 84 patients in the locating group were successfully located, and localization time was 19.0±3.6 minutes. Among them, 19 (22.6%) patients had a small pneumothorax, 4 (4.8%) pulmonary hemorrhage and 2 (2.4%) coil shift; 6 (7.1%) patients had mild pain, 3 (3.6%) moderate pain and 1 (1.2%) severe pain. Sex (P=0.181), age (P=0.673), nodule location (P=0.167), nature of lesion (P=0.244), rate of conversion to thoracotomy (P=0.414), rate of disposable resection of nodules (P=0.251) and postoperative hospital stay (P=0.207) were similar between the two groups. There were significant differences in nodule size (P<0.001), nature of nodule (P<0.001), the shortest distance from nodule to pleura (P<0.001), operation time (P<0.001), lung volume by wedge resection (P=0.031), number of staplers (P<0.001) and total hospitalization costs (P<0.001) between the two groups.ConclusionCT-guided microcoil localization has the characteristics of high success rate, and is simple, practicable, effective, safe and minimally invasive. Preoperative CT-guided microcoil localization has important clinical application value for small pulmonary nodules, especially those with small size, deep location and less solid components. It can effectively shorten the operation time, reduce surgical trauma and lower hospitalization costs, which is a preoperative localization technique worthy of popularization.
Objective To identify risk factors that affect the verification of malignancy in patients with solitary pulmonary nodule (SPN) and verify different prediction models for malignant probability of SPN. Methods We retrospectively analyzed the clinical data of 117 SPN patients with definite postoperative pathological diagnosis who underwent surgical procedure in China-Japan Friendship Hospital from March to September 2017. There were 59 males and 58 females aged 59.10±11.31 years ranging from 24 to 83 years. Imaging features of the nodule including maximum diameter, location, spiculation, lobulation, calcification and serum level of CEA and Cyfra21-1 were assessed as potential risk factors. Univariate analysis was used to establish statistical correlation between risk factors and postoperative pathological diagnosis. Receiver operating characteristic (ROC) curve was drawn by different predictive models for the malignant probability of SPN to get areas under the curves (AUC), sensitivity, specificity, positive predictive values, negative predictive values for each model. The predictive effectiveness of each model was statistically assessed subsequently. Results Among 117 patients, 93 (79.5%) were malignant and 24 (20.5%) were benign. Statistical difference was found between the benign and malignant group in age, maximum diameter, serum level of CEA and Cyfra21-1, spiculation, lobulation and calcification of the nodules. The AUC value was 0.813±0.051 (Mayo model), 0.697±0.066 (VA model) and 0.854±0.045 (Peking University People's Hospital model), respectively. Conclusion Age, maximum diameter of the nodule, serum level of CEA and Cyfra21-1, spiculation, lobulation and calcification are potential independent risk factors associated with the malignant probability of SPN. Peking University People's Hospital model is of high accuracy and clinical value for patients with SPN. Adding serum index into the prediction model as a new risk factor and adjusting the weight of age in the model may improve the accuracy of prediction for SPN.
ObjectiveTo explore the clinical application of the comprehensive guidance technologies, such as cone beam computed tomography (CBCT), virtual bronchoscopic navigation (VBN), and superimposed high-frequency jet ventilator for respiratory control in the biopsy of peripheral pulmonary nodules (PPNs). MethodsThe clinical information of 3 patients with PPNs diagnosed by CBCT combined with VBN and superimposed high frequency superposition jet ventilator in Shanghai Changhai Hospital were retrospectively analyzed. Results Clinical data of 3 patients were collected. The average diameter of PPNs was (25.3±0.3) mm with various locations in left and right lung. The first nodule was located in the apex of the left upper lung, and the biopsy was benign without malignant cells. The lesion was not enlarged during the 5-year follow-up. The second one was located in the left lingual lung, and the postoperative pathology was confirmed as mucosa-associated lymphoma. The third one was located in the anterior segment of the right upper lung. After the failure of endobronchial procedure, percutaneous PPNs biopsy under CBCT combined with VBN was performed, and the pathological diagnosis was confirmed as primary lung adenocarcinoma. Postoperative pneumothorax complication occurred in the third patient with right lung compression rate approximately 20%. ConclusionsThe application of CBCT, combined with VBN and the superimposed high frequency jet ventilator for respiratory control can potentially improve the accuracy and safety in the diagnosis of PPNs. Multi-center clinical trials are needed to verify its further clinical application.
ObjectiveTo compare the clinical application of empirical thoracoscopic segmentectomy and precise segmentectomy planned by artificial intelligence software, and to provide some reference for clinical segmentectomy. MethodsA retrospective analysis was performed on the patients who underwent thoracoscopic segmentectomy in our department from 2019 to 2022. The patients receiving empirical thoracoscopic segmentectomy from January 2019 to September 2021 were selected as a group A, and the patients receiving precise segmentectomy from October 2021 to December 2022 were selected as a group B. The number of preoperative Hookwire positioning needle, proportion of patients meeting oncology criteria, surgical time, intraoperative blood loss, postoperative chest drainage time, postoperative hospital stay, and number of patients converted to thoracotomy between the two groups were compared. Results A total of 322 patients were collected. There were 158 patients in the group A, including 56 males and 102 females with a mean age of 56.86±8.82 years, and 164 patients in the group B, including 55 males and 109 females with a mean age of 56.69±9.05 years. All patients successfully underwent thoracoscopic segmentectomy, and patients whose resection margin did not meet the oncology criteria were further treated with extended resection or even lobectomy. There was no perioperative death. The number of positioning needles used for segmentectomy in the group A was more than that in the group B [47 (29.7%) vs. 9 (5.5%), P<0.001]. There was no statistical difference in the number of positioning needles used for wedge resection between the two groups during the same period (P=0.572). In the group A, the nodule could not be found in the resection target segment in 3 patients, and the resection margin was insufficient in 10 patients. While in the group B, the nodule could not be found in 1 patient, and the resection margin was insufficient in 3 patients. There was a statistical difference between the two groups [13 (8.2%) vs. 4 (2.4%), P=0.020]. There was no statistical difference between the two groups in terms of surgical time, intraoperative blood loss, duration of postoperative thoracic drainage, postoperative hospital stay, or conversion to open chest surgery (P>0.05). Conclusion Preoperative surgical planning performed with the help of artificial intelligence software can effectively guide the completion of thoracoscopic anatomical segmentectomy. It can effectively ensure the resection margin of pulmonary nodules meeting the oncological requirements and significantly reduce the number of positioning needles of pulmonary nodules.
ObjectiveTo investigate the preoperative psychological state of patients with pulmonary nodules in order to make the content of the education more "individualized and humanized".MethodsWe conducted a consecutive questionnaire study for 107 patients who were planning to undergo pulmonary resection surgery from May 2018 to July 2018 in our department. There were 54 males and 53 females with an average age of 56.8±11.2 years. The questionnaire content included two parts: personal basic information and 20 questions about surgery, complications, follow-up and hospitalization expense.ResultsThere were 60.7% of the patients diagnosed with pulmonary nodules by CT scan during physical examination, and 52.3% of the patients had strong will to undergo pulmonary surgery to resect nodules; 64.5% of patients wanted doctors to tell them the extent of the disease and whether the tumor could be cured by surgery, and 30.0% of patients concerned whether chief surgeon would complete the whole surgery. The surgery risk and postoperative complications were ignored by patients easily (5.6% and 14.9% respectively). The hospital expenses were not the primary concern of patients. Only 1.9% of patients believed that doctors used nonessentials which deliberately led to increased costs. Network follow-up was accepted by most patients (94.4%).ConclusionIt will contribute to improve preoperative education rationality and effectiveness by understanding true psychological state of patients.
ObjectiveTo compare the effectiveness and safety of electromagnetic navigation-guided localization and CT-guided percutaneous localization for pulmonary nodules.MethodsThe literature published from the inception to January 2021 about the comparison between electromagnetic navigation-guided localization and CT-guided percutaneous localization for pulmonary nodules in the PubMed, The Cochrane Library, Web of Science, EMbase, Chinese Wanfang database and CNKI database was searched. RevMan (version 5.4) software was used for meta-analysis. Nonrandomized controlled trials were evaluated using methodological index for nonrandomized studies (MINORS).ResultsA total of six retrospective studies (567 patients) were included in this meta-analysis. MINORS scores of all studies were all 17 points and above. There were 317 patients in the CT-guided percutaneous localization group and 250 patients in the electromagnetic navigation-guided localization group. The complication rate of the CT-guided percutaneous localization group was significantly higher than that in the electromagnetic navigation-guided localization group (OR=11.08, 95%CI 3.35 to 36.65, P<0.001). There was no significant difference in the success rate of localization (OR=0.48, 95%CI 0.16 to 1.48, P=0.20), localization time (MD=0.30, 95%CI –6.16 to 6.77, P=0.93) or nodule diameter (MD=–0.07, 95%CI –0.19 to 0.06, P=0.29) between the two groups.ConclusionElectromagnetic navigation can be used as an effective preoperative positioning method for pulmonary nodules, which has the advantage of lower complication rate compared with the traditional CT positioning method.
Objective To evaluate the value of incremental dynamic enhanced computer tomography (CT) in diagnosis of solitary pulmonary nodules (SPN). Methods The data of 42 cases with SPN who had undergone pulmonary lobectomy were collected retrospectively to find the relationship between character of preoperative dynamic enhanced CT image and postoperative pathologic result. Results All bronchogenic carcinoma showed significant enhancement after intravenous 100 ml iodinated contrast material. The average degree of enhancement of bronchogenic carcinoma during the time 85s and 135s after infusion was significantly different from that of tuberculoma and other benign lesions(Plt;0.05). Conclusion Dynamic enhanced CT is valuable in identifying the malignant nodules from benign nodules. Emphasis should be paid to the lymph nodes in the relative field with dynamic enhanced CT, which is beneficial to the diagnosis of SPN and it is an important predictor of the result of surgical treatment.
Computer-aided detection (CAD) of pulmonary nodule technology can effectively assist the radiologist to enhance lung nodule detection efficiency and accuracy rate, so it can lay the foundation for the early diagnosis of lung cancer. In order to provide reference for the scholars and to develop the CAD technology, we in this paper review the technology research and development of CAD of the pulmonary nodules which is based on CT image in recent years both home and abroad. At the same time, we also analyse the advantages and shortcomings of different methods. Then we present the improvement direction for reference. According to the literature in recent years, there still has been large development space in CAD technology for pulmonary nodules. The establishment and improvement of the CAD system in each step would be of great scientific value.
ObjectiveTo explore the application of artificial intelligence (AI) in the standardized training of thoracic surgery residents, specifically in enhancing clinical skills and anatomical understanding through AI-assisted lung nodule identification and lung segment anatomy teaching. MethodsThoracic surgery residents undergoing standardized training at Peking Union Medical College Hospital from September 2023 to September 2024 were selected. They were randomly assigned to a trial group and a control group using a random number table. The trial group used AI-assisted three-dimensional reconstruction technology for lung nodule identification, while the control group used conventional chest CT images. After basic teaching and self-practice, the ability to identify lung nodules on the same patient CT images was evaluated, and feedback was collected through questionnaires. ResultsA total of 72 residents participated in the study, including 30 (41.7%) males and 42 (58.3%) females, with an average age of (24.0±3.0) years. The trial group showed significantly better overall diagnostic accuracy for lung nodules (91.9% vs. 73.3%) and lung segment identification (100.0% vs. 83.70%) compared to the control group, and the reading time was significantly shorter [ (118.5±10.5) s vs. (332.1±20.2) s, P<0.01]. Questionnaire results indicated that 94.4% of the residents had a positive attitude toward AI technology, and 91.7% believed that it improved diagnostic accuracy. ConclusionAI-assisted teaching significantly improves thoracic surgery residents’ ability to read images and clinical thinking, providing a new direction for the reform of standardized training.