Objective To explore a novel method for early lung cancer screening based on exhaled breath analysis. MethodsThis study enrolled patients with suspected pulmonary malignancies and healthy individuals undergoing physical examinations at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Qingchun and Qiantang campuses) from September 2023 to June 2024. Enrolled subjects were categorized into a lung cancer group, a benign nodule/tumor group, and a healthy control group. Exhaled breath samples were collected using a sensor array constructed from multiple graphene composite materials to capture breath fingerprints. Based on the collected data, screening and diagnostic models for lung cancer were developed and their performance was evaluated. ResultsA total of 4 580 subjects were included. Among them, 3 195 were pathologically diagnosed with pulmonary malignancies, including 1 394 males and 1 801 females with a mean age of (58.93±12.37) years, 599 were diagnosed with benign nodules/tumors including 339 males and 260 females with a mean age of (57.10±11.06) years, and 786 were healthy controls with no pulmonary nodules detected on chest CT including 420 males and 366 females with a mean age of (29.75±9.32) years. The screening model for high-risk populations (distinguishing patients with lung cancer/high-risk pulmonary nodules from healthy individuals) demonstrated excellent performance, with an area under the receiver operating characteristic curve (AUC) of 0.926. At the optimal Youden’s index (cutoff threshold of 63.5%), the external test set achieved a specificity of 85.2%, a sensitivity of 88.4%, and an accuracy of 86.8%. The diagnostic model (distinguishing patients with lung cancer/premalignant lesions from those with benign pulmonary nodules/healthy individuals) achieved an AUC of 0.818. At its optimal Youden’s index (cutoff threshold of 47.0%), the external test set showed a specificity of 71.7%, a sensitivity of 77.3%, and an accuracy of 74.5%. ConclusionThe non-invasive breath analysis platform based on a sensor array, developed in this study, can achieve rapid and relatively accurate lung cancer screening by analyzing breath fingerprints. This confirms the feasibility of this technology for early lung cancer screening and holds promise for facilitating the early detection and intervention of lung cancer.
Self-powered wearable piezoelectric sensing devices demand flexibility and high voltage electrical properties to meet personalized health and safety management needs. Aiming at the characteristics of piezoceramics with high piezoelectricity and low flexibility, this study designs a high-performance piezoelectric sensor based on multi-phase barium titanate (BTO) flexible piezoceramic film, namely multi-phase BTO sensor. The substrate-less self-supported multi-phase BTO films had excellent flexibility and could be bent 180° at a thickness of 33 μm, and exhibited good bending fatigue resistance in 1 × 104 bending cycles at a thickness of 5 μm. The prepared multi-phase BTO sensor could maintain good piezoelectric stability after 1.2 × 104 piezoelectric cycle tests. Based on the flexibility, high piezoelectricity, wearability, portability and battery-free self-powered characteristics of this sensor, the developed smart mask could monitor the respiratory signals of different frequencies and amplitudes in real time. In addition, by mounting the sensor on the hand or shoulder, different gestures and arm movements could also be detected. In summary, the multi-phase BTO sensor developed in this paper is expected to develop convenient and efficient wearable sensing devices for physiological health and behavioral activity monitoring applications.
Non-drug treatment of hypertension has become a research hotspot, which might overcome the heavy economic burden and side effects of drug treatment for the patients. Because of the good treatment effect and convenient operation, a new treatment based on slow breathing training is increasingly becoming a kind of physical therapy for hypertension. This paper explains the principle of hypertension treatment based on slow breathing training method, and introduces the overall structure of the portable blood pressure controlling instrument, including breathing detection circuit, the core control module, audio module, memory module and man-machine interaction module. We give a brief introduction to the instrument and the software in this paper. The prototype testing results showed that the treatment had a significant effect on controlling the blood pressure.
Artificial prosthesis is an important tool to help amputees to gain or partially obtain abled human limb functions. Compared with traditional prosthesis which is only for decoration or merely has feedforward control channel, the perception and feedback function of prosthesis is an important guarantee for its normal use and self-safety. And this includes the information of position, force, texture, roughness, temperature and so on. This paper mainly summarizes the development and current status of artificial prostheses in the field of perception and feedback technology in recent years, which is derived from two aspects: the recognition way of perception signals and the feedback way of perception signals. Among the part of recognition way of perception signals, the current commonly adopted sensors related to perception information acquisition and their application status in prosthesis are overviewed. Additionally, from the aspects of force feedback stimulation, invasive/non-invasive electrical stimulation, and vibration stimulation, the feedback methods of perception signals are summarized and analyzed. Finally, some problems existing in the perception and feedback technology of artificial prosthesis are proposed, and their development trends are also prospected.
Bl factor is a key system parameter of the resonant blood viscoelastic sensor. In this paper, a dynamic measurement system for the spatial distribution of Bl factor based on velocity amplitude and motional impedance was designed. The system extracted the velocity amplitude and motional impedance of the coil under the dynamic condition of driving the sensor to generate simple harmonic oscillations using laser displacement and impedance analysis combined with in-phase/quadrature demodulation algorithm, and controlled the equilibrium position of the coil by adjusting the direct current component of the excitation current to realize the position scanning. In the position interval of [−240, 240] μm, the maximum coefficient of variation of the measurement results was 0.077 3%, and the maximum relative error to the simulation results was 2.937 9%, with a linear fitting correlation coefficient R2 = 0.996 8. The system can be used to accurately measure the spatial distribution of Bl factor of the resonant blood viscoelastic sensor, which provides a technical support for the verification of the design of the sensor magnetic circuit.
There are already many ion detection methods available, and their development in long-term application practice has become very mature, which can achieve high-precision monitoring of different ion types and ion concentrations. However, in order to meet the requirements of modern smart healthcare, portable ion continuous monitoring methods with good portability, low operational difficulty, and high detection efficiency urgently need to be developed. However, existing detection methods are far from meeting the requirements of real-time and long-term health monitoring due to factors such as detection principles. In recent years, breakthroughs have been made in miniaturized and portable ion continuous monitoring technology, among which high-sensitivity and high-specificity miniature ion sensing components and miniaturized low-power driving measurement circuits have become the main research contents of this technology. This article starts with high-performance ion sensors in the front-end and high-level integrated driving measurement circuits in the back-end, summarizes the current development of miniaturized and portable ion continuous monitoring technology, reviews its applications, and looks forward to the possible development directions of portable ion monitoring technology in the future.
Objective To investigate the relationship between graded spinal cord ischemia/reperfusion injury and somatosensory evoked potentials(SEP),neurologic function score(NFS)and the histopathological changes of spinal cord. Methods Forty rabbits were randomized and equally divided into 4 groups: shamoperation group, ischemia for 30min, 45min and 60min groups. The spinal cord ischemiareperfusion injury model was created by occlusion of the abdominal aorta in rabbits. SEP was monitored before ischemia,5,10minutes after ischemia, 15, 30 minutes, 1,2, 24 and 48 hours after reperfusion. NFS was evaluated at 6,12,24 and 48 hours after reperfusion.The pathological changes of spinal cord were observed after reperfusion 48 hours. Results The pathological characters with mild,moderate and severe spinal cord ischemia/reperfusion injury could be simulated by declamping after 30, 45 and 60 minutes infrarenal aorta crossclamping. SEP amplitude returned to normal after reperfusion 15 minutes(Pgt;0.05)and SEP latency returned to normal after reperfusion 30 minutes(Pgt;0.05)during mild spinal cord ischemia/reperfusion injury.SEP amplitude returned to normal after reperfusion 30 minutes(Pgt;0.05)and SEP latency returned to normal after reperfusion 60 minutes(Pgt;0.05)during moderate spinal cord ischemia/reperfusion injury. SEP latency increased and SEP amplitude decreased during severe spinal cord ischemia/reperfusion injury,compared with other groups, there were significant differences in SEP latency and SEP amplitude by clamping the infrarenal aorta for 60min(Plt;0.01). With graded spinal cord ischemia/reperfusion injury, compared with shamoperation group, spinal cord ischemiareperfusion groups had significant differences in NFS(Plt;0.01). Conclusion SEP is much quicker in the recovery of amplitude than latency during spinal cord ischemia/reperfusion. SEP is a sensitive and accurate index for spinal cord function during ischemia/reperfusion injury. SEP monitoring spinal cord ischemia/reperfusion injury during operation provides experimental basis for clinical application.
The main magnetic field, generated by the excitation coil of the magnetic induction phase shift technology detection system, is mostly dispersed field with small field strength, and the offset effect needs to be further improved, which makes the detection signal weak and the detection system difficult to achieve quantitative detection, thus the technology is rarely used in vivo experiments and clinical trials. In order to improve problems mentioned above, a new Helmholtz birdcage sensor was designed. Stimulation experiment was carried out to analyze the main magnetic field in aspects of intensity and magnetic distribution, then different bleeding volume and bleeding rates experiments were conducted to compared with traditional sensors. The results showed that magnetic field intensity in detection region was 2.5 times than that of traditional sensors, cancellation effect of the main magnetic field was achieved, the mean value of phase difference of 10 mL rabbit blood was (–3.34 ± 0.21)°, and exponential fitting adjusted R2 between phase difference and bleeding volumes and bleeding rates were both 0.99. The proposed Helmholtz birdcage sensor has a uniform magnetic field with a higher field strength, enable more accurate quantification of hemorrhage and monitored change of bleeding rates, providing significance in magnetic induced technology research for cerebral hemorrhage detection.
Ultra-sensitive and quantitative analysis of proteins, nucleic acid, virus and other biochemical species are critical technologies for effective dianosis of disease, as well as medical studies. Silicon nanowires field-effect transistor (SiNWs-FET) biosensor is one of the most promising powerful platforms for label-free, real-time, ultra-sensitive detection of analyte. Here, the working principle of SiNWs-FET biosensor and the applications of SiNWs-FET biosensors in medicine were introduced. Moreover, the methods for enhancing the sensitivity of SiNWs-FET biosensor were discussed. Lastly, the prospecting of SiNWs-FET biosensor was presented.
Objectives To investigate the correlation between blood total cholesterol (TC) and prognosis of idiopathic sudden sensorineural hearing loss (ISSNHL) and to provide references for clinical treatment and prognosis assessment. Methods We included 232 ISSNHL patients with total deafness in Wenzhou Central Hospital from June 2015 to March 2017 using a prospective cohort design. Recording information including age, gender, hypertension, diabetes mellitus, vertigo, level of blood total cholesterol (TC), level of triglyceride (TG), level of low-density lipoprotein (LDL-C) and LDL/HDL ratio (LDL-C/HDL-C) were collected. Correlation between the prognosis of ISSNHL and blood total cholesterol were analyzed by univariable and multivariable logistic regression analysis. Results The clinical effective rate of patients with TC ranging from 5.2 mmol/L to 6.2 mmol/L was higher than that of patients with TC lower than 5.2 mmol/L (univariable: RR=6.49, 95%CI 3.16 to 13.30, P<0.001; multivariable-adjusted covariates: RR=6.15, 95%CI 2.66 to 14.3,P<0.001) with significant difference. No significant difference was found between patients with TC lower than 5.2 mmol/L and patients with TC higher than 6.2 mmol/L (univariable: RR=1.02, 95%CI 0.52 to 2.00,P=0.960; multivariable-adjusted covariates: RR=1.61, 95%CI 0.55 to 4.73, P=0.386). Gender-specific analysis showed for both male and female groups, the effective rates of patients with TC ranging from 5.2 mmol/L to 6.2 mmol/L were significantly higher than those of patients with TC lower than 5.2 mmol/L. There was no significant difference between patients with TC lower than 5.2 mmol/L and patients with TC higher than 6.2 mmol/L (P>0.05) in either male group or female group. Conclusion The current study suggests that patients with levels of TC ranging from 5.2 mmol/L to 6.2 mmol/L predicts the best prognosis.