ObjectiveTo analyze the risk factors for electrical status epilepticus during sleep (ESES) in patients with self-limited epilepsy with centrotemporal spikes (SeLECTs) and to construct a nomogram model. MethodsThis study selected 174 children with SeLECTs who visited the Third Affiliated Hospital of Zhengzhou University from March 2017 to March 2024 and had complete case data as the research subjects. According to the results of video electroencephalogram monitoring during the course of the disease, the children were divided into non-ESES group (88 cases) and ESES group (86 cases). Multivariate logistic regression analysis was used to identify the risk factors for the occurrence of ESES in SeLECTs patients. ResultsThe multifactor Logistic regression analysis demonstrated that the EEG discharges in bilateral cerebral areas,types of seizure, epileptic seizures after initial treatment were the independent risk factors for the occurrence of ESES in SeLECTs. ConclusionBilateral distribution of electroencephalogram discharges before treatment, emergence of new seizure forms, and epileptic seizures after initial treatment are risk factors for the ESES in SeLECTs patients. The nomogram model constructed based on the above risk factors has a high degree of accuracy.
Transcranial magneto-acoustical stimulation (TMAS), utilizing focused ultrasound and a magnetostatic field to generate an electric current in tissue fluid to regulate the activities of neurons, has high spatial resolution and penetration depth. The neuronal spike-frequency adaptation plays an important role in the treatment of neural information. In this paper, we study the effects of ultrasonic intensity, magnetostatic field intensity and ultrasonic frequency on the neuronal spike-frequency adaptation based on the Ermentrout neuron model. The simulation results show that, the peak time interval becomes smaller, the interspike interval becomes shorter and the time of the firing of the neuron is shortened with the increasing of the magnetostatic field intensity. With the increase of the adaptive variables, the initial spike-frequency is shifted to the right with the magnetostatic field intensity, and the spike-frequency is linearly related to the increase of the magnetostatic field intensity in steady state. The simulation effect with change of the ultrasonic intensity is consistent with the change of magnetostatic field intensity. The change of the ultrasonic frequency has no effect on the neuronal spike-frequency adaptation. Under the different adaptive variables, with the increase of the adaptive variables, the initial spike-frequency amplitude decreased with the increasing of the ultrasonic frequency, and the spike-frequency is linearly related to the increase of the ultrasonic frequency in steady state. These results of the study can help us to reveal the mechanism of transcranial magneto-acoustical stimulation on the neuronal spike-frequency adaptation, and provide a theoretical basis for its application in the treatment of neurological disorders.
A novel coronavirus (SARS-CoV-2) that broke out at the end of 2019 is a newly discovered highly pathogenic human coronavirus and has some similarities with severe acute respiratory syndrome coronavirus (SARS-CoV). Angiotensin-converting enzyme 2 (ACE2) is the receptor for infected cells by SARS-CoV. SARS-CoV can invade cells by binding to ACE2 through the spike protein and SARS-CoV-2 may also infect cells through ACE2. Meanwhile, ACE2 also plays an important role in the course of pneumonia. Therefore the possible role of ACE2 in SARS and coronavirus disease 2019 (COVID-19) is worth discussing. This paper briefly summarized the role of ACE2 in SARS, and discussed the possible function of ACE2 in COVID-19 and potential risk of infection with other organs. At last, the function of ACE2 was explored for possible treatment strategies for SARS. It is hoped to provide ideas and theoretical support for clinical treatment of COVID-19.
ObjectiveTo investigate the efficacy and safety of Perampanel (PER) monotherapy in the treatment of self limited epilepsy with central temporal spikes (SeLECTS). Methods The clinical data of the first confirmed SelECTS in the outpatient and inpatient department of Xuzhou Children's Hospital affiliated to Xuzhou Medical University in December 2021 were collected, and the clinical data of PER monotherapy were retrospectively analyzed. The Seizure of 12 months old children were followed up to observe the efficacy and safety of PER monotherapy with spikes in the central temporal region, and the changes of Electroencephalography were observed. Result A total of 45 children with SeLECTS were included, of which 43 had complete medical records, including 13 males and 30 females, aged 4 ~ 14 years old, with a course of disease ranging from 1 month to 1.5 years. All 45 patients had focal seizures or focal secondary generalized tonic clonic seizures. Among them, 43 patients treated with PER alone for 12 months had epilepsy control efficacy rates of 74.41% (32/43) and no seizure rates of 60.46% (26/43), respectively. Seven children (15.56%, 7/45) experienced adverse reactions, characterized by dizziness, unstable gait, and irritability. Conclusion The third generation anti Seizure drug PER has a clear effect in the treatment of SelECTS, 2 ~ 4 mg PER can control Seizure well, and has no significant impact on cognitive development.
Deep brain stimulation (DBS), which usually utilizes high frequency stimulation (HFS) of electrical pulses, is effective for treating many brain disorders in clinic. Studying the dynamic response of downstream neurons to HFS and its time relationship with stimulus pulses can reveal important mechanisms of DBS and advance the development of new stimulation modes (e.g., closed-loop DBS). To exhibit the dynamic neuronal firing and its relationship with stimuli, we designed a two-dimensional raster plot to visualize neuronal activity during HFS (especially in the initial stage of HFS). Additionally, the influence of plot resolution on the visualization effect was investigated. The method was then validated by investigating the neuronal responses to the axonal HFS in the hippocampal CA1 region of rats. Results show that the new design of raster plot is able to illustrate the dynamics of indexes (such as phase-locked relationship and latency) of single unit activity (i.e., spikes) during periodic pulse stimulations. Furthermore, the plots can intuitively show changes of neuronal firing from the baseline before stimulation to the onset dynamics during stimulation, as well as other information including the silent period of spikes immediately following the end of HFS. In addition, by adjusting resolution, the raster plot can be adapted to a large range of firing rates for clear illustration of neuronal activity. The new raster plot can illustrate more information with a clearer image than a regular raster plot, and thereby provides a useful tool for studying neuronal behaviors during high-frequency stimulations in brain.
The measurement of network is one of the important researches in resolving neuronal population information processing mechanism using complex network theory. For the quantitative measurement problem of functional neural network, the relation between the measure indexes, i.e. the clustering coefficient, the global efficiency, the characteristic path length and the transitivity, and the network topology was analyzed. Then, the spike-based functional neural network was established and the simulation results showed that the measured network could represent the original neural connections among neurons. On the basis of the former work, the coding of functional neural network in nidopallium caudolaterale (NCL) about pigeon's motion behaviors was studied. We found that the NCL functional neural network effectively encoded the motion behaviors of the pigeon, and there were significant differences in four indexes among the left-turning, the forward and the right-turning. Overall, the establishment method of spike-based functional neural network is available and it is an effective tool to parse the brain information processing mechanism.
Recently a COVID-19 pneumonia pandemic caused by a novel coronavirus 2019-nCoV has broken out over the world. In order to better control the spread of the pandemic, there’s an urgent need to extensively study the virus’ origin and the mechanisms for its infectivity and pathogenicity. Spike protein is a special structural protein on the surface of coronavirus. It contains important information about the evolution of the virus and plays critical roles in the processes of cellular recognition and entry. In the past decades, spike protein has always been one of the most important objects in research works on coronaviruses closely related to human life. In this review we introduce these research works related to spike proteins, hoping it will provide reasonable ideas for the control of the current pandemic, as well as for the diagnosis and treatment of COVID-19.
Deep brain stimulation (DBS) has been successfully used to treat a variety of brain diseases in clinic. Recent investigations have suggested that high frequency stimulation (HFS) of electrical pulses used by DBS might change pathological rhythms in action potential firing of neurons, which may be one of the important mechanisms of DBS therapy. However, experimental data are required to confirm the hypothesis. In the present study, 1 min of 100 Hz HFS was applied to the Schaffer collaterals of hippocampal CA1 region in anaesthetized rats. The changes of the rhythmic firing of action potentials from pyramidal cells and interneurons were investigated in the downstream CA1 region. The results showed that obvious θ rhythms were present in the field potential of CA1 region of the anesthetized rats. The θ rhythms were especially pronounced in the stratum radiatum. In addition, there was a phase-locking relationship between neuronal spikes and the θ rhythms. However, HFS trains significantly decreased the phase-locking values between the spikes of pyramidal cells and the θ rhythms in stratum radiatum from 0.36 ± 0.12 to 0.06 ± 0.04 (P < 0.001, paired t-test, N = 8). The phase-locking values of interneuron spikes were also decreased significantly from 0.27 ± 0.08 to 0.09 ± 0.05 (P < 0.01, paired t-test, N = 8). Similar changes were obtained in the phase-locking values between neuronal spikes and the θ rhythms in the pyramidal layer. These results suggested that axonal HFS could eliminate the phase-locking relationship between action potentials of neurons and θ rhythms thereby changing the rhythmic firing of downstream neurons. HFS induced conduction block in the axons might be one of the underlying mechanisms. The finding is important for further understanding the mechanisms of DBS.
Objective The ReHo, ALFF, fALFF of resting-state functional magnetic resonance imaging (RS-fMRI) technology were used to study the influencing factors and neural mechanism of cognitive dysfunction in patients with benign epilepsy of childhood with centrotemporal spikes (BECT). Methods Fourteen patients were enrolled (from April 2015 to March 2018) from epilepsy specialist outpatients and Functional Department of Neurosurgery of Tianjin Medical University General Hospital. They underwent the long term VEEG monitoring (one sleep cycle was included at least), the Wechsler Intelligence Scale (China Revised), the head MRI and RS-fMRI examinations. Spike-wave index (SWI), FIQ, VIQ, PIQ scores were calculated. According to full-scale IQ (FIQ), they were divided into two groups: FIQ<90 (scores range from 70 to 89, the average score was 78.3±8.9, 6 cases) and FIQ≥90 (scores range from 90 to 126, the average score was 116.6±12.9, 8 cases). SPSS21.0 statistical software was used to compare the general clinical data and SWI of the two groups, and the correlation between clinical factors and the evaluation results of Wechsler Intelligence Scale was analyzed. The RS-fMRI images were preprocessed and the further data were analysed by two independent samplest-test under the whole brain of regional homogeneity (ReHo), amplitude of low frequency fluctuation (ALFF) and fractional of ALFF (fALFF) methods. The differences of brain activation regions in RS-fMRI between the two groups were observed, and the results of general clinical data, SWI and cognitive function test were compared and analyzed comprehensively. Results The differences of SWI were statistically significant (P<0.05): FIQ<90 group were greater than FIQ≥90 group. The FIQ, VIQ and PIQ of two groups were negatively correlated with SWI (P<0.05). And the FIQ and PIQ were negatively correlated with the total number of seizures (P<0.05). Compared with FIQ≥90 group by two samplet-test based on whole level ReHo, ALFF, fALFF methods, deactivation of brain regions of FIQ<90 group include bilateral precuneus, posterior cingulate and occipital lobe, and enhanced activation of brain regions include left prefrontal cortex, bilateral superior frontal gyrus medial and right precentral gyrus, supplementary motor area, angular gyrus, supramarginal gyrus, middle temporal gyrus, bilateral insular lobe and subcortical gray matter structures. Conclusions Frequent epileptic discharges during slow wave sleep and recurrent clinical episodes were risk factors for cognitive impairment in BECT patients. Repeated clinical seizures and frequent subclinical discharges could cause dysfunction of local brain areas associated with cognition and the default network, resulting in patients with impaired cognitive function.
To explore the self-organization robustness of the biological neural network, and thus to provide new ideas and methods for the electromagnetic bionic protection, we studied both the information transmission mechanism of neural network and spike timing-dependent plasticity (STDP) mechanism, and then investigated the relationship between synaptic plastic and adaptive characteristic of biology. Then a feedforward neural network with the Izhikevich model and the STDP mechanism was constructed, and the adaptive robust capacity of the network was analyzed. Simulation results showed that the neural network based on STDP mechanism had good rubustness capacity, and this characteristics is closely related to the STDP mechanisms. Based on this simulation work, the cell circuit with neurons and synaptic circuit which can simulate the information processing mechanisms of biological nervous system will be further built, then the electronic circuits with adaptive robustness will be designed based on the cell circuit.