west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "vascular endothelial cells" 19 results
  • Silencing Nodal inhibits the biological behavior of retinal vascular endothelial cells under high glucose conditions

    Objective To observe the effect of Nodal on the biological behavior of retinal vascular endothelial cells (RF/6A cells) in monkeys with high glucose. MethodsRF/6A cells were divided into normal group, mannitol group, high glucose group, high glucose combined with non-specific small interfering RNA treatment group (HG+NC group), high glucose combined with small interfering Nodal treatment group (HG+siNodal group). The transfection efficiency of siNodal was observed by real-time fluorescence quantitative PCR and western blot protein immunoblotting. The effect of Nodal on the proliferation of RF/6A cells was detected by thiazole blue colorimetry. The effect of Nodal on migration ability of RF/6A cells was detected by cell scratch assay. The effect of Nodal on the formation of RF/6A cell lumen was measured by Matrigel three-dimensional in vitro. The expression of extracellular signal phosphorylated regulated kinase 1/2 (pERK1/2) in RF/6A cells was detected by western blot protein immunoblotting. One-way analysis of variance was used to compare groups. ResultsCompared with HG+NC group, Nodal protein (F=33.469) and mRNA relative expression levels (F=38.191) in HG+siNodal group were significantly decreased, cell proliferation was significantly decreased (F=28.548), and cell migration ability was significantly decreased (F=24.182). The number of cell lumen formation was significantly decreased (F=52.643), and the differences were statistically significant (P<0.05). Compared with HG+NC group, the relative expression of pERK1/2 protein in HG+siNodal group was significantly decreased, and the difference was statistically significant (F=44.462, P<0.01). ConclusionsSilencing Nodal expression can inhibit proliferation, migration and tube formation of RF/6A cells induced by high glucose. It may act by inhibiting pERK1/2 expression.

    Release date:2024-03-06 03:23 Export PDF Favorites Scan
  • Effects of icariin on autophagy and exosome production of bone microvascular endothelial cells

    ObjectiveTo evaluate the effects of icariin on autophagy induced by low-concentration of glucocorticoid and exosome production in bone microvascular endothelial cells (BMECs).MethodsBMECs were isolated from femoral heads resected in total hip arthroplasty and then intervened with hydrocortisone of low concentration (0, 0.03, 0.06, 0.10 mg/mL), which were set as groups A, B, C, and D, respectively. On the basis of hydrocortisone intervention, 5×10−5 mol/L of icariin was added to each group (set as groups A1, B1, C1 and D1, respectively). Western blot was used to detect the expressions of microtubule-associated protein 1 light chain 3B (LC3B) and dead bone slice 1 (p62) after 24 hours. Exosomes were extracted from BMECs treated with icariin (intervention group) and without icariin (non-intervention group), and the diameter and concentration of exosomes were evaluated by nanoparticle tracking analysis technique. The total protein content of exosomes was detected by BCA method, and the expressions of proteins carried by exosomes including CD9, CD81, transforming growth factor β1 (TGF-β1), and vascular endothelial growth factor A (VEGFA) were assessed by Western blot. The BMECs were further divided into three groups: BMECs in the experimental group and the control group were co-cultured with exosomes secreted by BMECs treated with or without icariin, respectively; the blank control group was BMECs without exosome intervention. The three groups were treated with hydrocortisone and Western blot was used to detect the expressions of LC3B and p62. The scratching assay was used to detect cell migration ability; angiogenic ability of BMECs was also assessed.ResultsWith the increase of hydrocortisone concentration, the protein expression of LC3B-Ⅱ increased gradually, and the protein expression of p62 decreased gradually (P<0.01). Compared with group with same concentration of hydrocortisone, the protein expression of LC3B-Ⅱ decreased and the protein expression of p62 increased after the administration of icariin (P<0.01). The concentration of exosomes in the intervention group was significantly higher than that in the non-intervention group (t=−10.191, P=0.001); and there was no significant difference in exosome diameter and total protein content between the two groups (P>0.05). CD9 and CD81 proteins were highly expressed in the non-intervention group and the intervention group, and the relative expression ratios of VEGFA/CD9 and TGF-β1/CD9 proteins in the intervention group were significantly higher than those in the non-intervention group (P<0.01). After co-culture of exosomes, the protein expression of p62 increased in blank control group, control group, and experimental group, while the protein expression of LC3B-Ⅱ decreased. There were significant differences among groups (P<0.05). When treated with hydrocortisone for 12 and 24 hours, the scratch closure rate of the control group and experimental group was significantly higher than that of the blank control group (P<0.05), and the scratch closure rate of the experimental group was significantly higher than that of the control group (P<0.05). When treated with hydrocortisone for 4 and 8 hours, the number of lumens, number of sprouting vessels, and length of tubule branches in the experimental group and the control group were significantly greater than those in the blank control group (P<0.05); the length of tubule branches and the number of lumens in the experimental group were significantly greater than those in the control group (P<0.05).ConclusionIcariin and BMECs-derived exosomes can improve the autophagy of BMECs induced by low concentration of glucocorticoid.

    Release date:2019-05-06 04:48 Export PDF Favorites Scan
  • Up-regulation of p21 activated kinase 4 expression in the retina of diabetes mice and its effects on the behavior and mitochondrial function in retinal vascular endothelial cells

    ObjectiveTo observe the effects of p21 activated kinase 4 (PAK4) on the mitochondrial function and biological behavior in retinal vascular endothelial cells. MethodsThe experimental study was divided into two parts: in vivo animal experiment and in vitro cell experiment. In vivo animal experiments: 12 healthy C57BL/6J male mice were randomly divided into normal control group and diabetes group, with 6 mice in each group. Diabetes mice were induced by streptozotocin to establish diabetes model. Eight weeks after modeling, quantitative real-time polymerase chain reaction and Western blots were performed to detect the expression of PAK4 in diabetic retinas. In vitro cell experiments: the human retinal microvascular endothelial cells (hRMEC) were divided into three groups: conventional cultured cells group (N group), empty vector transfected (Vector group); pcDNA-PAK4 eukaryotic expression plasmid transfected group (PAK4 group). WB and qPCR were used to detect transfection efficiency, while scratching assay, cell scratch test was used to detect cell migration in hRMEC of each group. In vitro white blood cell adhesion experiment combined with 4 ', 6-diamino-2-phenylindole staining was used to detect the number of white blood cells adhering to hRMEC in each group. The Seahorse XFe96 cell energy metabolism analyzer measures intracellular mitochondrial basal respiration, adenosine triphosphate (ATP) production, maximum respiration, and reserve respiration capacity. The t-test was used for comparison between the two groups. Single factor analysis of variance was used for comparison among the three groups. ResultsIn vivo animal experiments: compared with normal control group, the relative expression levels of PAK4 mRNA and protein in retina of diabetic mice were significantly increased, with statistical significance (t=25.372, 22.419, 25.372; P<0.05). In vitro cell experiment: compared with the N group and Vector group, the PAK4 protein, mRNA relative expression and cell mobility in the hRMEC of PAK4 group were significantly increased, with statistical significance (F=36.821, 38.692, 29.421; P<0.05). Flow cytometry showed that the adhesion number of leukocytes on hRMEC in PAK4 group was significantly increased, and the difference was statistically significant (F=39.649, P<0.01). Mitochondrial pressure measurement results showed that the capacity of mitochondrial basic respiration, ATP production, maximum respiration and reserve respiration in hRMEC in PAK4 group was significantly decreased, with statistical significance (F=27.472, 22.315, 31.147, 27.472; P<0.05). ConclusionOver-expression of PAK4 impairs mitochondrial function and significantly promotes leukocyte adhesion and migration in retinal vascular endothelial cells.

    Release date: Export PDF Favorites Scan
  • Influence of Tumor Microenvironment of Hepatocellular Carcinoma on the Proliferation of Vascular Endothelial Cells and Vascular Angiogenesis Ability

    To study the potential molecular mechanism of tumor angiogenesis in its microenvironment, we investigated the effects of HepG2 conditioned medium on the proliferation of vascular endothelial cell and vascular angiogenesis in our laboratory. Human umbilical vein endothelial EA.hy926 cells were co-cultured with HepG2 conditioned medium in vitro. The proliferation and the tubulogenesis of EA.hy926 cells were detected by teramethylazo salt azole (MTT) and tube formation assay, respectively. The results showed that the survival rate of the EA.hy926 cells was significantly increased under the co-culture condition. HepG2 conditioned medium also enhanced the angiogenesis ability of EA.hy926 cells. In addition, the expressions of intracellular VEGF and extracellular VEGFR (Flk-1) were regulated upward in a time-dependent manner. In conclusion, the proliferation of vascular endothelial cells and Vascula angiogenesis were improved under the condition of indirect co-culture.

    Release date: Export PDF Favorites Scan
  • Extracellular vesicles derived from bone marrow mesenchymal stem cells improve lung tissue injury in mice with severe acute pancreatitis

    Objective To investigate the effect and potential mechanism of bone marrow mesenchymal stem cells (BMSCs) - derived extracellular vesicles (EVs) on lung tissue injury in mice with severe acute pancreatitis (SAP). Methods A total of 24 specific pathogen free grade male C57BL/6 mice and primary mouse lung microvascular endothelial cells (PMVECs) were selected. The mice were divided into sham group, SAP group, and BMSC group, with 8 mice in each group. The mouse primary PMVECs were divided into model group [sodium taurocholate (NaTC) group], BMSC-EV group, and control group. Extraction and characterization of healthy mouse BMSCs and their derived extracellular vesicles (BMSC-EVs) were conducted. A mouse model of SAP was established, and BMSC-EVs were injected into SAP mice by tail vein or intervened in PMVECs in vitro, to observe the pathological damage of pancreatic and lung tissues, the changes of serum amylase, lipase, and inflammatory factors [tumor necrosis factor α (TNF-α), interleukin-6 (IL-6)], the expression of inflammatory factors of lung tissues and PMVECs, and the endothelial cell barrier related proteins [E-cadherin, ZO-1, intercellular cell adhesion molecule-1 (ICAM-1)], and tight junctions between PMVECs to explore the effects of BMSC-EVs on pancreatic and lung tissues in SAP mice and PMVECs in vitro. Results BMSCs had the potential for osteogenic, chondrogenic, and lipogenic differentiation, and the EVs derived from them had a typical cup-shaped structure with a diameter of 60-100 nm. BMSC-EVs expressed the extracellular vesicle-positive proteins TSG101 and CD63 and did not express the negative protein Calnexin. Compared with the mice in the sham group, the SAP mice underwent significant pathological damage to the pancreas (P<0.05), and their serum amylase, lipase, inflammatory factor IL-6, and TNF-α levels were significantly up-regulated (P<0.05); whereas, BMSC-EVs markedly ameliorated the pancreatic tissue damage in the SAP mice (P<0.05), down-regulated the levels of peripheral serum amylase, lipase, IL-6 and TNF-α (P<0.05), and up-regulated the level of anti-inflammatory factor IL-10 (P<0.05). In addition to this, the SAP mice showed significant lung histopathological damage (P<0.05), higher neutrophils and macrophages infiltration (P<0.05), higher levels of the inflammatory factors TGF-β and IL-6 (P<0.05), as well as reduced barrier protein E-cadherin, ZO-1 expression and elevated expression of ICAM-1 (P<0.05). BMSC-EVs significantly ameliorated lung histopathological injury, inflammatory cells infiltration, inflammatory factor levels, and expression of barrier proteins, and suppressed ICAM-1 expression (P<0.05). In the in vitro PMVECs experiments, it was found that intercellular tight junctions were broken in the NaTC group, and the levels of inflammatory factors TNF-α and IL-6 were significantly up-regulated (P<0.05), the protein expression of E-cadherin and ZO-1 was significantly down-regulated (P<0.05), and the expression of ICAM-1 was significantly up-regulated (P<0.05). BMSC-EVs significantly improved intercellular tight junctions in the NaTC group and inhibited the secretion of TNF-α and IL-6 (P<0.05), up-regulated the expression of the barrier proteins E-cadherin and ZO-1, and down-regulated the expression of ICAM-1 (P<0.05). Conclusion BMSC-derived EVs ameliorate lung tissue injury in SAP mice by restoring the lung endothelial cell barrier and inhibiting inflammatory cell infiltration.

    Release date:2024-11-27 02:45 Export PDF Favorites Scan
  • SCD40 ligand expression and inflammatory response in acute aortic dissection patients

    Objective To investigate the relationship of cluster of differentiation 40L (CD40L) between inflammatory response mediated by vascular endothelial injury and Stanford A type aortic dissection (STAAD). Methods In this study from August 2016 to February 2017, a total of 215 blood samples from 95 STAAD patients (67 males and 28 females aged 48.33±12.19 years) and 120 healthy volunteers (94 males and 26 females aged 48.64±10.13 years) were collected. The patients with aortic dissection were taken blood 1 hour before the operation and the healthy volunteers were taken blood from the elbow vein. All STAAD patients were diagnozed by computed tomography angiography (CTA) and patients with Marfan syndrome were excluded. Blood samples were tested by enzyme-linked immunosorbent assay (ELISA) for CD40L, vascular cell adhesion molecule (VCAM-1), E-selectin, interleukin-1 (IL-1) beta, IL-6, tumor necrosis factor-alpha (TNF-α) and so on. ResultsCompared with the healthy population, the level of SCD40L(26.87±5.50 ng/ml vs. 13.39±4.03 ng/ml, P<0.001) in the STAAD patients was significantly higher. E-Selectin (116.62±25.24 ng/ml vs. 77.05±14.30 ng/ml, P<0.001), VCAM-1 (P<0.001), TNF-α (55.35±9.12 ng/ml vs. 37.33±5.61 pg/ml, P<0.001), IL-1β (62.12±13.37 ng/ml vs. 48.68±9.86 pg/ml, P<0.001), IL-6 (499.54±90.45 ng/ml vs. 422.44±34.00 pg/ml, P<0.001) significantly increased. Conclusion The increased expression of SCD40L in STAAD patients and the inflammatory reaction induced by endothelial injury in aortic dissection patients are obvious.

    Release date:2019-03-29 01:35 Export PDF Favorites Scan
  • Role and mechanism of stromal cell derived factor 1 on proliferation of vascular endothelial cells

    Objective To investigate the role and relative mechanism of stromal cell derived factorl (SDF-1) secreted by nucleus pulposus cells (NPCs) on the proliferation of vascular endothelial cells (VECs). Methods The NPCs were isolated from the degenerated disc specimens after discectomy. NPCs at passage 1 were transfected with lentivirus-mediated SDF-1 over-expression; transfected and untransfected NPCs at passage 2 were cultured in the three-dimensional alvetex® scaffold, then they were co-cultured with HMEC-1 cells. The morphology of NPCs was observed by scanning electron microscope (SEM), and the apoptosis of HMEC-1 cells was detected by Annexin V/propidiumiodide staining after 72 hours co-culutre. The proliferation of HMEC-1 cells was detected by cell counting kit 8 at 12, 24, 48, and 72 hours in transfected group and untransfected group, respectively. ELISA was used to measure the vascular endothelial growth factor (VEGF) expression level. The virus transfection efficiency and relative Akt pathway were determined by Western blot. Results The NPCs maintained cell phenotype and secreted much extracellular matrix in three-dimensional-culture by SEM observation. In the co-culutre system, after NPCs were transfected with SDF-1 over-expression lentivirus, the proliferation of HMEC-1 cells was significantly increased, while the apoptosis was decreased obviously. The ELISA results demonstrated that the amount of VEGF was remarkably increased in the culture medium. Furthermore, SDF-1 promoted the up-regulation of phosphorylate Akt expression; after inhibition of Akt expression by GSK690693, the proliferation rate of VECs decreased significantly. Conclusion Over-expression of SDF-1 by NPCs is beneficial for VECs proliferation, which is involved in SDF-1-Akt signalling pathway.

    Release date:2017-02-15 09:26 Export PDF Favorites Scan
  • Interleukin-8 antagonist down regulates the adhesion and migration of retinal vascular endothelial cells by inhibiting the production of reactive oxygen species

    ObjectiveTo observe the effect of interleukin-8 (IL-8) on the adhesion and migration of retinal vascular endothelial cells (RCEC). MethodsA cell experiment. Human RCEC (hRCEC) was divided into normal control group (N group), advanced glycation end product (AGE) treatment group (AGE group), and AGE-induced combined IL-8 antagonist SB225002 treatment group (AGE+SB group). The effect of AGE on IL-8 expression in hRCEC was observed by Western blot. The effect of SB225002 on hRCEC migration was observed by cell scratch assay. The effects of SB225002 on leukocyte adhesion and reactive oxygen species (ROS) on hRCEC were detected by flow cytometry. Student-t test was performed between the two groups. One-way analysis of variance was performed among the three groups. ResultsCompared with group N, the expression level of IL-8 in cells of AGE group was significantly increased, with statistical significance (t=25.661, P<0.001). Compared with N group and AGE+SB group, cell mobility in AGE group was significantly increased (F=29.776), leukocyte adhesion number was significantly increased (F=38.159, 38.556), ROS expression level was significantly increased (F=22.336), and the differences were statistically significant (P<0.05). ConclusionIL-8 antagonist SB225002 may down-regulate hRCEC adhesion and migration by inhibiting ROS expression.

    Release date:2023-11-16 05:57 Export PDF Favorites Scan
  • Effects of prostaglandin E2 receptor on the activation of inflammasomes and cell damage in human retinal microvascular endothelial cells in a high-glucose environment

    ObjectiveTo observe the effects of four prostaglandin E2 (PGE2) receptors (EP1-4R) on the activation of inflammasomes and cell damage in human retinal microvascular endothelial cells (hRMEC) in a high glucose environment.MethodsThe hRMEC were divided into normal group and high glucose group, and they were cultured in Dulbecco modified Eagle medium containing 5.5 and 30.0 mmol/L glucose, respectively. Flow cytometry was used to observe the apoptosis rate of the high glucose group and the normal group; enzyme chain immunosorbent assay (ELISA) was used to detect the level of PGE2 in the culture supernatant of hRMEC cells. Western blot was used to detect the protein expression of cyclooxyganese (COX2) and EP1-4R in hRMEC. Real-time fluorescent quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of EP1-4R mRNA in hRMEC. After 72 h of culture, the cells in the high glucose group were divided into control group, PGE2 group, EP1-4R agonist group, PGE2+EP1-4R inhibitor group, and dimethylsulfoxide group. According to the group, each group was given the corresponding agonist or inhibitor to continue the culture for 24 h. QRT-PCR was used to detect the expression of nucleotide-binding oligomerization structure-like receptor protein (NLRP3) and pro-interleukin (IL)-1β mRNA in each group of cells. ELISA was used to detect the content of IL-1β and lactic dehydrogenase (LDH) in the cell culture supernatant. Western blot was used to detect the expression of cleaved Caspase-1 in each group of cells. At the same time, hRMEC in a high glucose environment was given IL-1β stimulation for 24 h, and the activity of LDH in the supernatant of the cell culture medium was detected.ResultsThe apoptotic rate, COX2 protein expression, and PGE2 protein content in hRMEC in the high glucose group were significantly higher than those in the normal group, and they were time-dependent. Compared with the normal group, the expression levels of EP1R, EP2R, EP4R protein and mRNA in hRMEC in the high glucose group were higher than those in the normal group (P<0.05). Compared with the control group, PGE2 group (t=4.627, P<0.01), EP1-4R agonist group (t=3.889, 3.583, 2.445, 3.216; P<0.05) hRMEC NLRP3 mRNA expression level was significantly increased; the expression level of pro-IL-1β mRNA increased, however the difference was not statistically significant (PGE2 group: t=1.807, P>0.05; EP1-4R agonist group: t=1.807, 1.477, 0.302, 1.926, P>0.05). Compared with the PGE2 group, the expression of NLRP3 mRNA in hRMEC in the PGE2+EP2R inhibitor group was significantly reduced (t=2.812, P<0.05); the expression of pro-IL-1β mRNA in hRMEC in the PGE2+EP3R inhibitor group was significantly increased (t=4.113, P<0.01). The protein content of IL-1β in the cell culture supernatant of the PGE2 group, EP1R agonist group and EP2R agonist group was significantly higher than that of the control group (t=5.155, 4.136, 4.817; P<0.01). Compared with PGE2 group, the protein content of IL-1β in the cell culture supernatant of the PGE2+EP2R inhibitor group and the PGE2+EP4R inhibitor group were significantly lower than that of the PGE2 group (t=1.964, 4.765; P<0.05). The expression of cleaved Caspase-1 in hRMEC in the PGE2 group and EP2R agonist group was significantly higher than that in the control group (t=5.332, 4.889; P<0.05). The expression of cleaved Caspase-1 in hRMEC in the PGE2+EP2R inhibitor group was significantly lower than that of the PGE2 group (t=6.699, P<0.01). The LDH activity in the cell culture supernatant of the PGE2 group and the EP2R agonist group was significantly higher than that of the control group (t=4.908, 4.225; P<0.05). The activity of LDH in the cell culture supernatant of the PGE2+EP2R inhibitor group was significantly lower than that of the PGE2 group (t=5.301, P<0.01). Compared with the control group, the LDH activity in the culture supernatant of hRMEC cells in the high glucose environment was significantly increased (t=3.499, P<0.05).ConclusionsThe four receptors of PGE2 can activate NLRP3 and its effector molecules to varying degrees. EP2R mainly mediates hRMEC damage under high glucose environment.

    Release date:2021-09-16 05:17 Export PDF Favorites Scan
  • Heterotopic osteogenesis study of tissue engineered bone by co-culture of vascular endothelial cells and adipose-derived stem cells

    ObjectiveTo investigate the heterotopic osteogenesis of tissue engineered bone using the co-culture system of vascular endothelial cells (VECs) and adipose-derived stem cells (ADSCs) as seed cells.MethodsThe partially deproteinized biological bone (PDPBB) was prepared by fibronectin combined with partially deproteinized bone (PDPB). The ADSCs of 18-week-old Sprague Dawley (SD) rats and VECs of cord blood of full-term pregnant SD rats were isolated and cultured. Three kinds of tissue engineered bone were constructed in vitro: PDPBB+VECs (group A), PDPBB+ADSCs (group B), PDPBB+co-cultured cells (VECs∶ADSCs was 1∶1, group C), and PDPBB was used as control group (group D). Scanning electron microscopy was performed at 10 days after cell transplantation to observe cell adhesion on scaffolds. Forty-eight 18-week-old SD rats were randomly divided into groups A, B, C, and D, with 12 rats in each group. Four kinds of scaffolds, A, B, C, and D, were implanted into the femoral muscle bags of rats in corresponding groups. The animals were killed at 2, 4, 8, and 12 weeks after operation for gross observation, HE staining and Masson staining histological observation, and the amount of bone collagen was measured quantitatively by Masson staining section.ResultsScanning electron microscopy showed that the pores were interconnected in PDPB materials, and a large number of lamellar protein crystals on the surface of PDPBB modified by fibronection were loosely attached to the surface of the scaffold. After 10 days of co-culture PDPBB and cells, a large number of cells attached to PDPBB and piled up with each other to form cell clusters in group C. Polygonal cells and spindle cells were mixed and distributed, and some cells grew along bone trabeculae to form cell layers. Gross observation showed that the granulation tissue began to grow into the material pore at 2 weeks after operation. In group C, a large number of white cartilage-like substances were gradually produced on the surface of the material after 4 weeks, and the surface of the material was uneven. At 12 weeks, the amount of blood vessels on the surface of group A increased, and the material showed consolidation; there was a little white cartilage-like material on the surface of group B, but the pore size of the material did not decrease significantly; in group D, the pore size of the material did not decrease significantly. Histological observation showed that there was no significant difference in the amount of bone collagen between groups at 2 weeks after operation (F=2.551, P=0.088); at 4, 8, and 12 weeks after operation, the amount of bone collagen in group C was significantly higher than that in other 3 groups, and that in group B was higher than that in group D (P<0.05); there was no significant difference between group A and groups B, D (P>0.05).ConclusionThe ability of heterotopic osteogenesis of tissue engineered bone constructed by co-culture VECs and ADSCs was the strongest.

    Release date:2019-09-18 09:49 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content