| 1. |
Jeon S, Oh IH. Regeneration of the retina: toward stem cell therapy for degenerative retinal diseases[J]. BMB Rep, 2015, 48(4): 193-199. DOI: 10.5483/bmbrep.2015.48.4.276.
|
| 2. |
Thummel R, Kassen SC, Montgomery JE, et al. Inhibition of Müller glial cell division blocks regeneration of the light-damaged zebrafish retina[J]. Dev Neurobiol, 2008, 68(3): 392-408. DOI: 10.1002/dneu.20596.
|
| 3. |
Lamba D, Karl M, Reh T. Neural regeneration and cell replacement: a view from the eye[J]. Cell Stem Cell, 2008, 2(6): 538-549. DOI: 10.1016/j.stem.2008.05.002.
|
| 4. |
Holländer H, Makarov F, Dreher Z, et al. Structure of the macroglia of the retina: sharing and division of labour between astrocytes and Müller cells[J]. J Comp Neurol, 1991, 313(4): 587-603. DOI: 10.1002/cne.903130405.
|
| 5. |
Reichenbach A, Bringmann A. New functions of Müller cells[J]. Glia, 2013, 61(5): 651-678. DOI: 10.1002/glia.22477.
|
| 6. |
López-Colomé AM, López E, Mendez-Flores OG, et al. Glutamate receptor stimulation up-regulates glutamate uptake in human Müller glia cells[J]. Neurochem Res, 2016, 41(7): 1797-1805. DOI: 10.1007/s11064-016-1895-z.
|
| 7. |
Goldman D. Müller glial cell reprogramming and retina regeneration[J]. Nat Rev Neurosci, 2014, 15(7): 431-442. DOI: 10.1038/nrn3723.
|
| 8. |
Wong KA, Benowitz LI. Retinal ganglion cell survival and axon regeneration after optic nerve injury: role of inflammation and other factors[J/OL]. Int J Mol Sci, 2022, 23(17): 10179[2022-09-05]. https://pubmed.ncbi.nlm.nih.gov/36077577/. DOI: 10.3390/ijms231710179.
|
| 9. |
Martínez-Gil N, Maneu V, Kutsyr O, et al. Cellular and molecular alterations in neurons and glial cells in inherited retinal degeneration[J/OL]. Front Neuroanat, 2022, 16: 984052[2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/36225228/. DOI: 10.3389/fnana.2022.984052.
|
| 10. |
Conedera FM, Pousa AMQ, Mercader N, et al. The TGFβ/Notch axis facilitates Müller cell-to-epithelial transition to ultimately form a chronic glial scar[J/OL]. Mol Neurodegener, 2021, 16(1): 69[2021-09-30]. https://pubmed.ncbi.nlm.nih.gov/34593012/. DOI: 10.1186/s13024-021-00482-z.
|
| 11. |
Fawcett JW, Schwab ME, Montani L, et al. Defeating inhibition of regeneration by scar and myelin components[J]. Handb Clin Neurol, 2012, 109: 503-522. DOI: 10.1016/B978-0-444-52137-8.00031-0.
|
| 12. |
Huang X, Luodan A, Gao H, et al. Mitochondrial transfer between BMSCs and Müller promotes mitochondrial fusion and suppresses gliosis in degenerative retina[J/OL]. iScience, 2024, 27(7): 110309[2024-06-20]. https://pubmed.ncbi.nlm.nih.gov/39055937/. DOI: 10.1016/j.isci.2024.110309.
|
| 13. |
Wong TY, Cheung CM, Larsen M, et al. Diabetic retinopathy[J/OL]. Nat Rev Dis Primers, 2016, 2: 16012[2016-04-17]. https://pubmed.ncbi.nlm.nih.gov/27159554/. DOI: 10.1038/nrdp.2016.12.
|
| 14. |
Mat Nor MN, Guo CX, Green CR, et al. Hyper-reflective dots in optical coherence tomography imaging and inflammation markers in diabetic retinopathy[J]. J Anat, 2023, 243(4): 697-705. DOI: 10.1111/joa.13889.
|
| 15. |
Lai D, Wu Y, Shao C, et al. The role of Müller cells in diabetic macular edema[J/OL]. Invest Ophthalmol Vis Sci, 2023, 64(10): 8[2023-07-03]. https://pubmed.ncbi.nlm.nih.gov/37418272/. DOI: 10.1167/iovs.64.10.8.
|
| 16. |
Deng B, Nnebe C, Prakhar P, et al. New insights into diabetes-induced cell-type-specific responses in the neural retina via single-cell transcriptomics: a teport on research supported by pathway to stop diabetes[J]. Diabetes, 2025, 74(10): 1720-1726. DOI: 10.2337/dbi24-0009.
|
| 17. |
Li X, Li B, Feng D, et al. Upregulation of SQSTM1 regulates ferroptosis and oxidative stress in Müller cells of the diabetic neural retina by modulating ACSL4[J/OL]. J Diabetes Res, 2025, 2025: 1924668[2025-08-13]. https://pubmed.ncbi.nlm.nih.gov/40843317/. DOI: 10.1155/jdr/1924668.
|
| 18. |
Bringmann A, Syrbe S, Görner K, et al. The primate fovea: structure, function and development[J]. Prog Retin Eye Res, 2018, 66: 49-84. DOI: 10.1016/j.preteyeres.2018.03.006.
|
| 19. |
Bringmann A, Karol M, Unterlauft JD, et al. Foveal regeneration after resolution of cystoid macular edema without and with internal limiting membrane detachment: presumed role of glial cells for foveal structure stabilization[J]. Int J Ophthalmol, 2021, 14(6): 818-833. DOI: 10.18240/ijo.2021.06.06.
|
| 20. |
Bringmann A, Wiedemann P. Involvement of Müller glial cells in epiretinal membrane formation[J]. Graefe’s Arch Clin Exp Ophthalmol, 2009, 247(7): 865-883. DOI: 10.1007/s00417-009-1082-x.
|
| 21. |
Mansour MA, Parodi M, Uwaydat HS, et al. Idiopathic macular hole: algorithm for nonsurgical closure based on literature review[J]. J Ophthalmic Vis Res, 2023, 18(4): 424-432. DOI: 10.18502/jovr.v18i4.14555.
|
| 22. |
Bringmann A, Unterlauft JD, Barth T, et al. Müller cells and astrocytes in tractional macular disorders[J/OL]. Prog Retin Eye Res, 2022, 86: 100977[2021-06-05]. https://pubmed.ncbi.nlm.nih.gov/34102317/. DOI: 10.1016/j.preteyeres.2021.100977.
|
| 23. |
Lucchesi M, Di Marsico L, Guidotti L, et al. Hypoxia-dependent upregulation of VEGF relies on β3-adrenoceptor signaling in human retinal endothelial and Müller cells[J/OL]. Int J Mol Sci, 2025, 26(9): 4043[2025-04-24]. https://pubmed.ncbi.nlm.nih.gov/40362282/. DOI: 10.3390/ijms26094043.
|
| 24. |
Yao X, Li Z, Lei Y, et al. Single-cell multiomics profiling reveals heterogeneity of Müller cells in the oxygen-induced retinopathy model[J/OL]. Invest Ophthalmol Vis Sci, 2024, 65(13): 8[2024-11-04]. https://pubmed.ncbi.nlm.nih.gov/39504047/. DOI: 10.1167/iovs.65.13.8.
|
| 25. |
Shi S, Xia F, Lu Z, et al. Epac1 deletion attenuates Müller glial pathological activation and mitigates retinal neurodegeneration in ischemia-induced retinopathy[J/OL]. J Adv Res, 2025, 19: S2090-1232(25)00735-0[2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/40976555/. DOI: 10.1016/j.jare.2025.09.031.
|
| 26. |
Mansour AM, Gad MS, Habib S, et al. Bidirectional hypoxic extracellular vesicle signaling between Müller glia and retinal pigment epithelium regulates retinal metabolism and barrier function[J/OL]. Biology (Basel), 2025, 14(8): 1014[2025-08-07]. https://pubmed.ncbi.nlm.nih.gov/40906190/. DOI: 10.3390/biology14081014.
|
| 27. |
He S, Liu C, Ren C, et al. Immunological landscape of retinal ischemia-reperfusion injury: insights into resident and peripheral immune cell responses[J]. Aging Dis, 2024, 16(1): 115-136. DOI: 10.14336/AD.2024.0129.
|
| 28. |
Masson EAY, Serrano J, Leger-Charnay E, et al. Cholesterol and oxysterols in retinal neuron-glia interactions: relevance for glaucoma[J/OL]. Front Ophthalmol (Lausanne), 2024, 3: 1303649[2024-01-03]. https://pubmed.ncbi.nlm.nih.gov/38983043/. DOI: 10.3389/fopht.2023.1303649.
|
| 29. |
Hu X, Zhao GL, Xu MX, et al. Interplay between Müller cells and microglia aggravates retinal inflammatory response in experimental glaucoma[J/OL]. J Neuroinflammation, 2021, 18(1): 303[2021-12-24]. https://pubmed.ncbi.nlm.nih.gov/34952606/. DOI: 10.1186/s12974-021-02366-x.
|
| 30. |
Wójcik-Gryciuk A, Gajewska-Woźniak O, Kordecka K, et al. Neuroprotection of retinal ganglion cells with AAV2-BDNF pretreatment restoring normal TrkB receptor protein levels in glaucoma[J/OL]. Int J Mol Sci, 2020, 21(17): 6262[2020-08-29]. https://pubmed.ncbi.nlm.nih.gov/32872441/. DOI: 10.3390/ijms21176262.
|
| 31. |
Shinozaki Y, Namekata K, Guo X, et al. Glial cells as a promising therapeutic target of glaucoma: beyond the IOP[J/OL]. Front Ophthalmol (Lausanne), 2024, 3: 1310226[2024-01-08]. https://pubmed.ncbi.nlm.nih.gov/38983026/. DOI: 10.3389/fopht.2023.1310226.
|
| 32. |
Chohan A, Singh U, Kumar A, et al. Müller stem cell dependent retinal regeneration[J]. Clin Chim Acta, 2017, 464: 160-164. DOI: 10.1016/j.cca.2016.11.030.
|
| 33. |
Thomas JL, Ranski AH, Morgan GW, et al. Reactive gliosis in the adult zebrafish retina[J]. Exp Eye Res, 2016, 143: 98-109. DOI: 10.1016/j.exer.2015.09.017.
|
| 34. |
Zhang H, Guo Y, Yang Y, et al. MAP4Ks inhibition promotes retinal neuron regeneration from Müller glia in adult mice[J/OL]. NPJ Regen Med, 2023, 8(1): 36[2023-07-13]. https://pubmed.ncbi.nlm.nih.gov/37443319/. DOI: 10.1038/s41536-023-00310-6.
|
| 35. |
Yao K, Qiu S, Wang YV, et al. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas[J]. Nature, 2018, 560(7719): 484-488. DOI: 10.1038/s41586-018-0425-3.
|
| 36. |
Boudreau-Pinsonneault C, David LA, Lourenço Fernandes JA, et al. Direct neuronal reprogramming by temporal identity factors[J/OL]. Proc Natl Acad Sci USA, 2023, 120(19): e2122168120[2023-05-09]. https://pubmed.ncbi.nlm.nih.gov/37126716/. DOI: 10.1073/pnas.2122168120.
|
| 37. |
Jayaram H, Jones MF, Eastlake K, et al. Transplantation of photoreceptors derived from human Müller glia restore rod function in the P23H rat[J]. Stem Cells Transl Med, 2014, 3(3): 323-333. DOI: 10.5966/sctm.2013-0112.
|
| 38. |
Todd L, Suarez L, Quinn C, et al. Retinoic acid-signaling regulates the proliferative and neurogenic capacity of Müller glia-derived progenitor cells in the avian retina[J]. Stem Cells, 2018, 36(3): 392-405. DOI: 10.1002/stem.2742.
|
| 39. |
Hoang T, Wang J, Boyd P, et al. Gene regulatory networks controlling vertebrate retinal regeneration[J/OL]. Science, 2020, 370(6519): eabb8598[2020-11-20]. https://pubmed.ncbi.nlm.nih.gov/33004674/. DOI: 10.1126/science.abb8598.
|
| 40. |
Jorstad NL, Wilken MS, Grimes WN, et al. Stimulation of functional neuronal regeneration from Müller glia in adult mice[J]. Nature, 2017, 548(7665): 103-107. DOI: 10.1038/nature23283.
|
| 41. |
Wang Y, Nusinowitz S, Yang XJ. Elevating Jak-STAT signaling via SOCS3 deletion sustains photoreceptor viability and visual function in mouse models of retinitis pigmentosa[J/OL]. Res Sq, 2025, 11: rs. 3. rs-7089882[2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/40671803/. DOI: 10.21203/rs.3.rs-7089882/v1.
|
| 42. |
Heravi M, Rasoulinejad SA. Potential of Müller glial cells in regeneration of retina; clinical and molecular approach[J]. Int J Organ Transplant Med, 2022, 13(1): 50-59.
|
| 43. |
Sharma P, Gupta S, Chaudhary M, et al. Biphasic role of Tgf-β signaling during Müller glia reprogramming and retinal regeneration in zebrafish[J/OL]. iScience, 2020, 23(2): 100817[2020-02-21]. https://pubmed.ncbi.nlm.nih.gov/32004993/. DOI: 10.1016/j.isci.2019.100817.
|
| 44. |
Conedera FM, Pousa AMQ, Mercader N, et al. Retinal microglia signaling affects Müller cell behavior in the zebrafish following laser injury induction[J]. Glia, 2019, 67(6): 1150-1166. DOI: 10.1002/glia.23601.
|
| 45. |
Thomas JL, Morgan GW, Dolinski KM, et al. Characterization of the pleiotropic roles of Sonic Hedgehog during retinal regeneration in adult zebrafish[J]. Exp Eye Res, 2018, 166: 106-115. DOI: 10.1016/j.exer.2017.10.003.
|
| 46. |
Mitra S, Sharma P, Kaur S, et al. Dual regulation of lin28a by Myc is necessary during zebrafish retina regeneration[J]. J Cell Biol, 2019, 218(2): 489-507. DOI: 10.1083/jcb.201802113.
|
| 47. |
Martínez-Vacas A, Di Pierdomenico J, Valiente-Soriano FJ, et al. Glial cell activation and oxidative stress in retinal degeneration induced by β-alanine caused taurine depletion and light exposure[J/OL]. Int J Mol Sci, 2021, 23(1): 346[2021-12-29]. https://pubmed.ncbi.nlm.nih.gov/35008772/. DOI: 10.3390/ijms23010346.
|
| 48. |
Zhong L, Yang D, Han X, et al. Overexpressing neurogenic differentiation factor 1 in Müller cells improves retinal function after optic nerve crush injury in adult mice[J/OL]. Neural Regen Res, 2025, 2025: E1(2024-11-28)[2025-09-03]. https://pubmed.ncbi.nlm.nih.gov/40903948/. DOI: 10.4103/NRR.NRR-D-24-01144.[published online ahead of print].
|
| 49. |
Fu Z, Qiu C, Cagnone G, et al. Retinal glial remodeling by FGF21 preserves retinal function during photoreceptor degeneration[J/OL]. iScience, 2021, 24(4): 102376[2021-04-29]. https://pubmed.ncbi.nlm.nih.gov/33937726/. DOI: 10.1016/j.isci.2021.102376.
|
| 50. |
Xiao L, Huang Z, Wu Z, et al. Reconstitution of pluripotency from mouse fibroblast through Sall4 overexpression[J/OL]. Nat Commun, 2024, 15(1): 10787[2024-12-30]. https://pubmed.ncbi.nlm.nih.gov/39737935/. DOI: 10.1038/s41467-024-54924-5.
|