1. |
刘梓煜, 刘大川. 生物靶向抑制剂在治疗眼底新生血管中的研究进展[J]. 眼科新进展, 2020, 40(6): 593-596. DOI: 10.13389/j.cnki.rao.2020.0136.Liu ZY, Liu DC. Research advances on the treatments of fundus neovascularization by bio-targeted inhibitor[J]. Rec Adv Ophthalmol, 2020, 40(6): 593-596. DOI: 10.13389/j.cnki.rao.2020.0136.
|
2. |
Lin FL, Wang PY, Chuang YF, et al. Gene therapy intervention in neovascular eye disease: a recent update[J]. Mol Ther, 2020, 28(10): 2120-2038. DOI: 10.1016/j.ymthe.2020.06.029.
|
3. |
Porta M, Striglia E. Intravitreal anti-VEGF agents and cardiovascular risk[J]. Intern Emerg Med, 2020, 15(2): 199-210. DOI: 10.1007/s11739-019-02253-7.
|
4. |
Fogli S, Del Re M, Rofi E, et al. Clinical pharmacology of intravitreal anti-VEGF drugs[J]. Eye (London, England), 2018, 32(6): 1010-1020. DOI: 10.1038/s41433-018-0021-7.
|
5. |
谭英, 冯卓蕾. 抗VEGF治疗眼底新生血管性疾病的临床研究进展[J]. 临床眼科杂志, 2023, 31(3): 274-278. DOI: 10.3969/j.issn.1006-8422.2023.03.021.Tan Y, Feng ZL. Clinical research progress of anti-VEGF in the treatment of fundus neovascular diseases[J]. J Clin Ophthalmol, 2023, 31(3): 274-278. DOI: 10.3969/j.issn.1006-8422.2023.03.021.
|
6. |
De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting[J]. Cell, 2013, 154(3): 651-653. DOI: 10.1016/j.cell.2013.06.037.
|
7. |
Zhou ZY, Wang L, Wang YS, et al. PFKFB3: a potential key to ocular angiogenesis[J/OL]. Front Cell Dev Biol, 2021, 9: 628317[2021-04-11]. https://pubmed.ncbi.nlm.nih.gov/33777937/. DOI: 10.3389/fcell.2021.628317.
|
8. |
Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation[J]. Nat Rev Mol Cell Biol, 2019, 20(7): 436-450. DOI: 10.1038/s41580-019-0123-5.
|
9. |
黄永林, 宋振恒, 王明刚, 等. 糖酵解关键限速酶及其调节因子参与原发性肝癌发生与发展的研究进展[J]. 肿瘤, 2023, 43(11): 895-904. DOI: 10.3781/j.issn.1000-7431.2023.2207-0541.Huang YL, Song ZH, Wang MG, et al. Research progress of key rate-limiting enzymes of glycolysis and their regulators in the occurrence and development of primary liver cancer[J]. Tumor, 2023, 43(11): 895-904. DOI: 10.3781/j.issn.1000-7431.2023.2207-0541.
|
10. |
Li X, Carmeliet P. Targeting angiogenic metabolism in disease[J]. Science, 2018, 359(6382): 1335-1336. DOI: 10.1126/science.aar5557.
|
11. |
邹蓉, 袁源智. PFKFB3在缺氧条件下调节血管新生的作用[J]. 复旦学报(医学版), 2019, 46(5): 691-695. DOI: 10.3969 /j.issn.1672-8467.2019.05.020. DOI: 10.3969/j.issn.1672-8467.2019.05.020.Zou R, Yuan YZ. The role of PFKFB3 in regulating angiogenesis under hypoxia[J]. Fudan Univ J Med Sci, 2019, 46(5): 691-695. DOI: 10.3969 /j.issn.1672-8467.2019.05.020. DOI: 10.3969/j.issn.1672-8467.2019.05.020.
|
12. |
Semenza GL. Hypoxia-inducible factors in physiology and medicine[J]. Cell, 2012, 148(3): 399-408. DOI: 10.1016/j.cell.2012.01.021.
|
13. |
Liu P, Sun D, Zhang S, et al. PFKFB3 in neovascular eye disease: unraveling mechanisms and exploring therapeutic strategies[J]. Cell Biosci, 2024, 14(1): 21. DOI: 10.1186/s13578-024-01205-9.
|
14. |
Real-Hohn A, Zancan P, Da Silva D, et al. Filamentous actin and its associated binding proteins are the stimulatory site for 6-phosphofructo-1-kinase association within the membrane of human erythrocytes[J]. Biochimie, 2010, 92(5): 538-544. DOI: 10.1016/j.biochi.2010.01.023.
|
15. |
Rohlenova K, Goveia J, García-Caballero M, et al. Single-cell RNA sequencing maps endothelial metabolic plasticity in pathological angiogenesis[J]. Cell Metab, 2020, 31(4): 862-877. DOI: 10.1016/j.cmet.2020.03.009.
|
16. |
Schoors S, De Bock K, Cantelmo AR, et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis[J]. Cell Metab, 2014, 19(1): 37-48. DOI: 10.1016/j.cmet.2013.11.008.
|
17. |
Wilhelm K, Happel K, Eelen G, et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium[J]. Nature, 2016, 529(7585): 216-220. DOI: 10.1038/nature16498.
|
18. |
Kalucka J, Bierhansl L, Conchinha NV, et al. Quiescent endothelial cells upregulate fatty acid β-oxidation for vasculoprotection via redox homeostasis[J]. Cell Metab, 2018, 28(6): 881-894. DOI: 10.1016/j.cmet.2018.07.016.
|
19. |
Hunt TK, Aslam RS, Beckert S, et al. Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms[J]. Antioxid Redox Signal, 2007, 9(8): 1115-1124. DOI: 10.1089/ars.2007.1674.
|
20. |
Ruan GX, Kazlauskas A. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis[J]. J Biol Chem, 2013, 288(29): 21161-21172. DOI: 10.1074/jbc.M113.474619.
|
21. |
Végran F, Boidot R, Michiels C, et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis[J]. Cancer Res, 2011, 71(7): 2550-2560. DOI: 10.1158/0008-5472.CAN-10-2828.
|
22. |
Bartrons R, Rodríguez-García A, Simon-Molas H, et al. The potential utility of PFKFB3 as a therapeutic target[J]. Expert Opin Ther Targets, 2018, 22(8): 659-674. DOI: 10.1080/14728222.2018.1498082.
|
23. |
Shi L, Pan H, Liu Z, et al. Roles of PFKFB3 in cancer[J/OL]. Signal Transduct Target Ther, 2017, 2: 17044[2017-11-24]. https://pubmed.ncbi.nlm.nih.gov/29263928/. DOI: 10.1038/sigtrans.2017.44.
|
24. |
Fukasawa M, Tsuchiya T, Takayama E, et al. Identification and characterization of the hypoxia-responsive element of the human placental 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase gene[J]. J Biochem, 2004, 136(3): 273-277. DOI: 10.1093/jb/mvh137.
|
25. |
Rodríguez-García A, Samsó P, Fontova P, et al. TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells[J]. FEBS J, 2017, 284(20): 3437-3454. DOI: 10.1111/febs.14201.
|
26. |
Novellasdemunt L, Bultot L, Manzano A, et al. PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli[J]. Biochem J, 2013, 452(3): 531-543. DOI: 10.1042/BJ20121886.
|
27. |
Novellasdemunt L, Obach M, Millán-Ariño L, et al. Progestins activate 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3) in breast cancer cells[J]. Biochem J, 2012, 442(2): 345-356. DOI: 10.1042/BJ20111418.
|
28. |
Wu Y, Zhang MH, Xue Y, , et al. Effect of microRNA-26a on vascular endothelial cell injury caused by lower extremity ischemia-reperfusion injury through the AMPK pathway by targeting PFKFB3[J]. J Cell Physiol, 2019, 234(3): 2916-2928. DOI: 10.1002/jcp.27108.
|
29. |
Du JY, Wang LF, Wang Q, et al. miR-26b inhibits proliferation, migration, invasion and apoptosis induction via the downregulation of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase-3 driven glycolysis in osteosarcoma cells[J]. Oncol Rep, 2015, 33(4): 1890-1898. DOI: 10.3892/or.2015.3797.
|
30. |
Imbert-Fernandez Y, Clem BF, O'Neal J, et al. Estradiol stimulates glucose metabolism via 6-phosphofructo-2-kinase (PFKFB3)[J]. J Biol Chem, 2014, 289(13): 9440-9448. DOI: 10.1074/jbc.M113.529990.
|
31. |
Perrotta P, de Vries MR, Peeters B, et al. PFKFB3 gene deletion in endothelial cells inhibits intraplaque angiogenesis and lesion formation in a murine model of venous bypass grafting[J]. Angiogenesis, 2022, 25(1): 129-143. DOI: 10.1007/s10456-021-09816-3.
|
32. |
Klarer AC, O'Neal J, Imbert-Fernandez Y, et al. Inhibition of 6-phosphofructo-2-kinase (PFKFB3) induces autophagy as a survival mechanism[J]. Cancer Metab, 2014, 2(1): 2. DOI: 10.1186/2049-3002-2-2.
|
33. |
Liu XT, Huang Y, Liu D, et al. Targeting the SphK1/S1P/PFKFB3 axis suppresses hepatocellular carcinoma progression by disrupting glycolytic energy supply that drives tumor angiogenesis[J]. J Transl Med, 2024, 22(1): 43. DOI: 10.1186/s12967-023-04830-z.
|
34. |
Hu X, Xu Q, Wan H, et al. PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis[J]. Lab Invest, 2020, 100(6): 801-811. DOI: 10.1038/s41374-020-0404-9.
|
35. |
Wang Y, Li H, Jiang S, et al. The glycolytic enzyme PFKFB3 drives kidney fibrosis through promoting histone lactylation-mediated NF-κB family activation[J]. Kidney Int, 2024, 106(2): 226-240. DOI: 10.1016/j.kint.2024.04.016.
|
36. |
Augustin HG, Koh GY. A systems view of the vascular endothelium in health and disease[J]. Cell, 2024, 187(18): 4833-4858. DOI: 10.1016/j.cell.2024.07.012.
|
37. |
Zhang Y, Wang S, Zhou Q, et al. Novel angiogenesis role of GLP-1(32-36) to rescue diabetic ischemic lower limbs via GLP-1R-dependent glycolysis in mice[J]. Arterioscler Thromb Vasc Biol, 2024, 44(6): 1225-1245. DOI: 10.1161/ATVBAHA.124.320714.
|
38. |
Gallop JL. Filopodia and their links with membrane traffic and cell adhesion[J]. Semin Cell Dev Biol, 2020, 102: 81-89. DOI: 10.1016/j.semcdb.2019.11.017.
|
39. |
Jia W, Zhao X, Zhao L, et al. Non-canonical roles of PFKFB3 in regulation of cell cycle through binding to CDK4[J]. Oncogene, 2018, 37(13): 1685-1698. DOI: 10.1038/s41388-017-0072-4.
|
40. |
Leal-Esteban LC, Fajas L. Cell cycle regulators in cancer cell metabolism[J/OL]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(5): 165715[2020-05-01]. https://pubmed.ncbi.nlm.nih.gov/32035102/. DOI: 10.1016/j.bbadis.2020.165715.
|
41. |
Yalcin A, Clem BF, Simmons A, et al. Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases[J]. J Biol Chem, 2009, 284(36): 24223-24232. DOI: 10.1074/jbc.M109.016816.
|
42. |
Cantelmo AR, Conradi LC, Brajic A, et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy[J]. Cancer Cell, 2016, 30(6): 968-985. DOI: 10.1016/j.ccell.2016.10.006.
|
43. |
Yang K, Qiu T, Zhou J, et al. Blockage of glycolysis by targeting PFKFB3 suppresses the development of infantile hemangioma[J]. J Transl Med, 2023, 21(1): 85. DOI: 10.1186/s12967-023-03932-y.
|
44. |
Almeida A, Bolaños JP, Moncada S. E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation[J]. Proc Natl Acad Sci USA, 2010, 107(2): 738-741. DOI: 10.1073/pnas.0913668107.
|
45. |
Draoui N, de Zeeuw P, Carmeliet P. Angiogenesis revisited from a metabolic perspective: role and therapeutic implications of endothelial cell metabolism[J/OL]. Open Biol, 2017, 7(12): 170219[2017-12-01]. https://pubmed.ncbi.nlm.nih.gov/29263247/. DOI: 10.1098/rsob.170219.
|
46. |
Zhou L, Li J, Wang J, et al. Pathogenic role of PFKFB3 in endothelial inflammatory diseases[J/OL]. Front Mol Biosci, 2024, 11: 1454456[2024-09-10]. https://pubmed.ncbi.nlm.nih.gov/39318551/. DOI: 10.3389/fmolb.2024.1454456.
|
47. |
Good WV. Retinopathy of prematurity incidence in children[J]. Ophthalmology, 2020, 127(4S): S82-83. DOI: 10.1016/j.ophtha.2019.11.026.
|
48. |
Sankar MJ, Sankar J, Chandra P. Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity[J/OL]. Cochrane Database Syst Rev, 2018, 1(1): Cd009734[2018-01-08]. https://pubmed.ncbi.nlm.nih.gov/29308602/. DOI: 10.1002/14651858.CD009734.pub2.
|
49. |
丁瞳, 陈宜. 早产儿视网膜病变抗VEGF治疗进展[J]. 国际眼科杂志, 2023, 23(08): 1328-1332. DOI: 10.3980/j.issn.1672-5123.2023.8.17.Ding T, Chen Y. Progress of Anti-vascular endothelial growth factor drugs for the treatment of retinopathy of prematurity[J]. Int Eye Sci, 2023, 23(08): 1328-1332. DOI: 10.3980/j.issn.1672-5123.2023.8.17.
|
50. |
Li X, Wang G, Li N, et al. Icariin alleviates oxygen-induced retinopathy by targeting microglia hexokinase 2[J]. Immunology, 2024, 173(1): 141-151. DOI: 10.1111/imm.13818.
|
51. |
Wang Y, Xie L, Zhu M, et al. Shikonin alleviates choroidal neovascularization by inhibiting proangiogenic factor production from infiltrating macrophages[J/OL]. Exp Eye Res, 2021, 213: 108823[2021-11-06]. https://pubmed.ncbi.nlm.nih.gov/34752817/. DOI: 10.1016/j.exer.2021.108823.
|
52. |
井云, 张晓培, 王冰, 等. 内皮细胞代谢在血管新生中的作用研究[J]. 生命科学, 2023, 35(9): 1185-1191. DOI: 10.13376/j.cbls/2023130.Jing Y, Zhang XP, Wang B, et al. The research of endothelial cell metabolism in angiogenesis[J]. Chinese Bulletin of Life Sciences, 2023, 35(9): 1185-1191. DOI: 10.13376/j.cbls/2023130.
|
53. |
Feng Y, Zou R, Zhang X, et al. YAP promotes ocular neovascularization by modifying PFKFB3-driven endothelial glycolysis[J]. Angiogenesis, 2021, 24(3): 489-504. DOI: 10.1007/s10456-020-09760-8.
|
54. |
Liu Z, Yan S, Wang J, et al. Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis[J]. Nat Commun, 2017, 8(1): 584. DOI: 10.1038/s41467-017-00551-2.
|
55. |
Zhou N, Liu L, Li Q. IL1R2 promotes retinal angiogenesis to participate in retinopathy of prematurity by activating the HIF1α/PFKFB3 pathway[J/OL]. Exp Eye Res, 2024, 239: 109750[2023-12-13]. https://pubmed.ncbi.nlm.nih.gov/38097102/. DOI: 10.1016/j.exer.2023.109750.
|
56. |
Liu Z, Xu J, Ma Q, et al. Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche[J/OL]. Sci Transl Med, 2020, 12(555): 1371[2020-08-05]. https://pubmed.ncbi.nlm.nih.gov/32759274/. DOI: 10.1126/scitranslmed.aay1371.
|
57. |
Roy S, Kern TS, Song B, et al. Mechanistic insights into pathological changes in the diabetic retina: implications for targeting diabetic retinopathy[J]. Am J Pathol, 2017, 187(1): 9-19. DOI: 10.1016/j.ajpath.2016.08.022.
|
58. |
Wong TY, Cheung CM, Larsen M, et al. Diabetic retinopathy[J/OL]. Nat Rev Dis Primers, 2016, 2: 16013[2016-03-17]. https://pubmed.ncbi.nlm.nih.gov/27159554/. DOI: 10.1038/nrdp.2016.12.
|
59. |
Nawaz IM, Rezzola S, Cancarini A, et al. Human vitreous in proliferative diabetic retinopathy: characterization and translational implications[J/OL]. Prog Retin Eye Res, 2019, 72: 100756[2019-04-02]. https://pubmed.ncbi.nlm.nih.gov/30951889/. DOI: 10.1016/j.preteyeres.2019.03.002.
|
60. |
Min J, Zeng T, Roux M, et al. The role of HIF1α-PFKFB3 pathway in diabetic retinopathy[J]. J Clin Endocrinol Metab, 2021, 106(9): 2505-2519. DOI: 10.1210/clinem/dgab362.
|
61. |
Herrero-Mendez A, Almeida A, Fernández E, et al. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1[J]. Nat Cell Biol, 2009, 11(6): 747-752. DOI: 10.1038/ncb1881.
|
62. |
Fu W, Shi D, Westaway D, et al. Bioenergetic mechanisms in astrocytes may contribute to amyloid plaque deposition and toxicity[J]. J Biol Chem, 2015, 290(20): 12504-12513. DOI: 10.1074/jbc.M114.618157.
|
63. |
Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration[J]. Lancet, 2018, 392(10153): 1147-1159. DOI: 10.1016/S0140-6736(18)31550-2.
|
64. |
Blasiak J, Hyttinen JMT, Szczepanska J, et al. Potential of long non-coding RNAs in age-related macular degeneration[J/OL]. Int J Mol Sci, 2021, 22(17): 9178[2021-08-25]. https://pubmed.ncbi.nlm.nih.gov/34502084/. DOI: 10.3390/ijms22179178.
|
65. |
Liu Z, Mao X, Yang Q, et al. Suppression of myeloid PFKFB3-driven glycolysis protects mice from choroidal neovascularization[J]. Br J Pharmacol, 2022, 179(22): 5109-5131. DOI: 10.1111/bph.15925.
|
66. |
Brodzka S, Baszyński J, Rektor K, et al. The role of glutathione in age-related macular degeneration (AMD)[J/OL]. Int J Mol Sci, 2024, 25(8): 4158[2024-04-09]. https://pubmed.ncbi.nlm.nih.gov/38673745/. DOI: 10.3390/ijms25084158.
|
67. |
Emini Veseli B, Perrotta P, Van Wielendaele P, et al. Small molecule 3PO inhibits glycolysis but does not bind to 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase-3 (PFKFB3)[J]. FEBS letters, 2020, 594(18): 3067-3075. DOI: 10.1002/1873-3468.13878.
|
68. |
Matsumoto K, Noda T, Kobayashi S, et al. Inhibition of glycolytic activator PFKFB3 suppresses tumor growth and induces tumor vessel normalization in hepatocellular carcinoma[J]. Cancer Lett, 2021, 500: 29-40. DOI: 10.1016/j.canlet.2020.12.011.
|
69. |
Mondal S, Roy D, Sarkar Bhattacharya S, et al. Therapeutic targeting of PFKFB3 with a novel glycolytic inhibitor PFK158 promotes lipophagy and chemosensitivity in gynecologic cancers[J]. Int J Cancer, 2019, 144(1): 178-819. DOI: 10.1002/ijc.31868.
|
70. |
Boyd S, Brookfield JL, Critchlow SE, et al. Structure-based design of potent and selective inhibitors of the metabolic kinase PFKFB3[J]. J Med Chem, 2015, 58(8): 3611-3625. DOI: 10.1021/acs.jmedchem.5b00352.
|
71. |
Emini Veseli B, Van Wielendaele P, Delibegovic M, et al. The PFKFB3 inhibitor AZ67 inhibits angiogenesis independently of glycolysis inhibition[J/OL]. Int J Mol Sci, 2021, 22(11): 5970[2021-05-31]. https://pubmed.ncbi.nlm.nih.gov/34073144/. DOI: 10.3390/ijms22115970.
|
72. |
Lopez-Fabuel I, Garcia-Macia M, Buondelmonte C, et al. Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis[J]. Nat Commun, 2022, 13(1): 536. DOI: 10.1038/s41467-022-28191-1.
|
73. |
Galindo CM, Oliveira Ganzella FA, Klassen G, et al. Nuances of PFKFB3 signaling in breast cancer[J/OL]. Clin Breast Cancer, 2022, 22(4): e604-e614[2022-01-15]. https://pubmed.ncbi.nlm.nih.gov/35135735/. DOI: 10.1016/j.clbc.2022.01.002.
|
74. |
De Oliveira T, Goldhardt T, Edelmann M, et al. Effects of the novel PFKFB3 inhibitor KAN0438757 on colorectal cancer cells and its systemic toxicity evaluation In vivo[J/OL]. Cancers, 2021, 13(5): 1011[2021-02-28]. https://pubmed.ncbi.nlm.nih.gov/33671096/. DOI: 10.3390/cancers13051011.
|
75. |
Ergashev A, Shi F, Liu Z, et al. KAN0438757, a novel PFKFB3 inhibitor, prevent the progression of severe acute pancreatitis via the Nrf2/HO-1 pathway in infiltrated macrophage[J]. Free Radic Biol Med, 2024, 210: 130-145. DOI: 10.1016/j.freeradbiomed.2023.11.010.
|
76. |
Xu J, Wang L, Yang Q, et al. Deficiency of myeloid PFKFB3 protects mice from lung edema and cardiac dysfunction in LPS-induced endotoxemia[J/OL]. Front Cardiovasc Med, 2021, 8: 745810[2021-09-29]. https://pubmed.ncbi.nlm.nih.gov/34660743/. DOI: 10.3389/fcvm.2021.745810.
|
77. |
SEO M, KIM JD, NEAU D, et al. Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect[J/OL]. PLoS One, 2011, 6(9): e24179[2011-09-21]. https://pubmed.ncbi.nlm.nih.gov/21957443/. DOI: 10.1371/journal.pone.0024179.
|
78. |
Abdali A, Baci D, Damiani I, et al. In vitro angiogenesis inhibition with selective compounds targeting the key glycolytic enzyme PFKFB3[J/OL]. Pharmacol Res, 2021, 168: 105592[2021-04-01]. https://pubmed.ncbi.nlm.nih.gov/33813027/. DOI: 10.1016/j.phrs.2021.105592.
|