- 1. Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China;
- 2. Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou 570311, China;
Tear fluid, as an important ocular surface fluid, can effectively reflect both ocular and systemic metabolic states through its compositional changes, making it an ideal source for discovering disease biomarkers. Current tear collection methods mainly include the Schirmer strip test and microcapillary collection, while detection technologies encompass enzyme-linked immunosorbent assay, protein chip technology, mass spectrometry, Olink targeted proteomics, and bead-based multiplex assays. Studies have shown that various biomarkers in tear fluid—such as proteins, cytokines, and chemokines that are closely associated with the pathophysiological processes of fundus diseases including diabetic retinopathy, retinal vein occlusion, age-related macular degeneration, retinopathy of prematurity, and uveitis, demonstrating potential as indicators for early diagnosis, disease assessment, and therapeutic monitoring. As a non-invasive and convenient detection tool, tear analysis shows broad application prospects in the diagnosis and treatment of fundus diseases. However, further optimization of collection and detection techniques, along with large-scale clinical studies to validate the clinical utility of tear biomarkers, is still needed to promote their standardization and widespread adoption in clinical practice.
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Stern ME, Beuerman RW, Fox RI, et al. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands[J]. Cornea, 1998, 17(6): 584-589. DOI: 10.1097/00003226-199811000-00002. |
2. | Zhou L, Beuerman RW. Tear analysis in ocular surface diseases[J]. Prog Retin Eye Res, 2012, 31(6): 527-550. DOI: 10.1016/j.preteyeres.2012.06.002. |
3. | Adigal SS, Rizvi A, Rayaroth NV, et al. Human tear fluid analysis for clinical applications: progress and prospects[J]. Expert Rev Mol Diagn, 2021, 21(8): 767-787. DOI: 10.1080/14737159.2021.1941879. |
4. | Altman J, Jones G, Ahmed S, et al. Tear film microRNAs as potential biomarkers: a review[J/OL]. Int J Mol Sci, 2023, 24(4): 3694[2023-02-12]. https://pubmed.ncbi.nlm.nih.gov/36835108/. DOI: 10.3390/ijms24043694. |
5. | Zhan X, Li J, Guo Y, et al. Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine[J]. EPMA J, 2021, 12(4): 449-475. DOI: 10.1007/s13167-021-00265-y. |
6. | Król-Grzymała A, Sienkiewicz-Szłapka E, Fiedorowicz E, et al. Tear biomarkers in Alzheimer's and Parkinson's diseases, and multiple sclerosis: implications for diagnosis (systematic review)[J/OL]. Int J Mol Sci, 2022, 23(17): 10123[2022-09-04]. https://pubmed.ncbi.nlm.nih.gov/36077520/. DOI: 10.3390/ijms231710123. |
7. | Kumar A, Sharma SP, Agarwal A, et al. Tear IL-6 and IL-10 levels in HLA-B27-associated uveitis and its clinical implications[J]. Ocul Immunol Inflamm, 2021, 29(2): 237-243. DOI: 10.1080/09273948.2019.1704022. |
8. | Tomosugi N, Kitagawa K, Takahashi N, et al. Diagnostic potential of tear proteomic patterns in Sjögren's syndrome[J]. J Proteome Res, 2005, 4(3): 820-825. DOI: 10.1021/pr0497576. |
9. | Pieragostino D, Bucci S, Agnifili L, et al. Differential protein expression in tears of patients with primary open angle and pseudoexfoliative glaucoma[J]. Mol Biosyst, 2012, 8(4): 1017-1028. DOI: 10.1039/c1mb05357d. |
10. | Choi W, Li Z, Oh HJ, et al. Expression of CCR5 and its ligands CCL3, -4, and -5 in the tear film and ocular surface of patients with dry eye disease[J]. Curr Eye Res, 2012, 37(1): 12-17. DOI: 10.3109/02713683.2011.622852. |
11. | Fauquert JL, Kowalski ML. Glycomics in tears: seeking for new biomarkers for ocular allergy diagnosis[J]. Allergy, 2021, 76(8): 2335-2336. DOI: 10.1111/all.14846. |
12. | 张丽, 李建桥. 重视全身疾病的眼部表现[J]. 眼科学报, 2023, 38(5): 365-370. DOI: 10.12419/j.issn.1000-4432.2023.05.01.Zhang L, Li JQ. Attach importance to ocular manifestations of systemic diseases[J]. Eye Science, 2023, 38(5): 365-370. DOI: 10.12419/j.issn.1000-4432.2023.05.01. |
13. | Ghasemi H, Yaraee R, Faghihzadeh S, et al. Tear and serum MMP-9 and serum TIMPs levels in the severe sulfur mustard eye injured exposed patients[J/OL]. Int Immunopharmacol, 2019, 77: 105812[2019-10-31]. https://pubmed.ncbi.nlm.nih.gov/31677500/. DOI: 10.1016/j.intimp.2019.105812. |
14. | Waszczykowska A, Goś R, Waszczykowska E, et al. The role of angiogenesis factors in the formation of vascular changes in scleroderma by assessment of the concentrations of VEGF and sVEGFR2 in blood serum and tear fluid[J/OL]. Mediators Inflamm, 2020, 2020: 7649480[2020-01-24]. https://pubmed.ncbi.nlm.nih.gov/32410862/. DOI: 10.1155/2020/7649480. |
15. | Chen Y, Meng Y, Tan M, et al. Changes in expression of inflammatory cytokines and ocular indicators in pre-diabetic patients with cataract[J/OL]. BMC Ophthalmol, 2025, 25(1): 119[2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/40065310/. DOI: 10.1186/s12886-025-03892-5. |
16. | Ponzini E. Tear biomarkers[J]. Adv Clin Chem, 2024, 120: 69-115. DOI: 10.1016/bs.acc.2024.03.002. |
17. | Beisel A, Jones G, Glass J, et al. Comparative analysis of human tear fluid and aqueous humor proteomes[J]. Ocul Surf, 2024, 33: 16-22. DOI: 10.1016/j.jtos.2024.03.011. |
18. | Pieczyński J, Szulc U, Harazna J, et al. Tear fluid collection methods: review of current techniques[J]. Eur J Ophthalmol, 2021, 31(5): 2245-2251. DOI: 10.1177/1120672121998922. |
19. | Rodney WM, Louie J, Puffer JC. Schirmer's test of lacrimation[J]. Am Fam Physician, 1981, 24(5): 161-164. |
20. | Stuchell RN, Feldman JJ, Farris RL, et al. The effect of collection technique on tear composition[J]. Invest Ophthalmol Vis Sci, 1984, 25(3): 374-377. |
21. | Ablamowicz AF, Nichols JJ. Concentrations of MUC16 and MUC5AC using three tear collection methods[J]. Mol Vis, 2017, 23: 529-537. |
22. | Posa A, Bräuer L, Schicht M, et al. Schirmer strip vs. capillary tube method: non-invasive methods of obtaining proteins from tear fluid[J]. Ann Anat, 2013, 195(2): 137-142. DOI: 10.1016/j.aanat.2012.10.001. |
23. | Iannella G, Di Nardo G, Plateroti R, et al. Investigation of pepsin in tears of children with laryngopharyngeal reflux disease[J]. Int J Pediatr Otorhinolaryngol, 2015, 79(12): 2312-2315. DOI: 10.1016/j.ijporl.2015.10.034. |
24. | Rentka A, Koroskenyi K, Harsfalvi J, et al. Evaluation of commonly used tear sampling methods and their relevance in subsequent biochemical analysis[J]. Ann Clin Biochem, 2017, 54(5): 521-529. DOI: 10.1177/0004563217695843. |
25. | Nättinen J, Aapola U, Jylhä A, et al. Comparison of capillary and schirmer strip tear fluid sampling methods using SWATH-MS proteomics approach[J/OL]. Transl Vis Sci Technol, 2020, 9(3): 16[2020-02-13]. https://pubmed.ncbi.nlm.nih.gov/32714642/. DOI: 10.1167/tvst.9.3.16. |
26. | Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA)[J]. Clin Chem, 2005, 51(12): 2415-2418. DOI: 10.1373/clinchem.2005.051532. |
27. | Antman G, Ritzer L, Galor A, et al. The relationship between dry eye disease and human microbiota: a review of the science[J/OL]. Exp Eye Res, 2024, 245: 109951[2024-06-03]. https://pubmed.ncbi.nlm.nih.gov/38838972/. DOI: 10.1016/j.exer.2024.109951. |
28. | Zhu H, Snyder M. Protein chip technology[J]. Curr Opin Chem Biol, 2003, 7(1): 55-63. DOI: 10.1016/s1367-5931(02)00005-4. |
29. | Bao J, Zhang P, Wu B, et al. Gp130 promotes inflammation via the STAT3/JAK2 pathway in allergic conjunctivitis[J/OL]. Invest Ophthalmol Vis Sci, 2023, 64(4): 5[2023-04-03]. https://pubmed.ncbi.nlm.nih.gov/37022703/. DOI: 10.1167/iovs.64.4.5. |
30. | Song RH, Wang B, Yao QM, et al. Proteomics screening of differentially expressed cytokines in tears of patients with Graves' ophthalmopathy[J]. Endocr Metab Immune Disord Drug Targets, 2020, 20(1): 87-95. DOI: 10.2174/1871530319666190618142215. |
31. | Zhou Y, Ma B, Liu Q, et al. Transmembrane protein CMTM6 alleviates ocular inflammatory response and improves corneal epithelial barrier function in experimental dry eye[J/OL]. Invest Ophthalmol Vis Sci, 2024, 65(1): 4[2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/38165704/. DOI: 10.1167/iovs.65.1.4. |
32. | Kim E, Kim J, Choi I, et al. Organic matrix-free imaging mass spectrometry[J]. BMB Rep, 2020, 53(7): 349-356. DOI: 10.5483/BMBRep.2020.53.7.078. |
33. | Croxatto A, Prod'hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology[J]. FEMS Microbiol Rev, 2012, 36(2): 380-407. DOI: 10.1111/j.1574-6976.2011.00298.x. |
34. | Ponzini E, Santambrogio C, De Palma A, et al. Mass spectrometry-based tear proteomics for noninvasive biomarker discovery[J]. Mass Spectrom Rev, 2022, 41(5): 842-860. DOI: 10.1002/mas.21691. |
35. | Petrera A, von Toerne C, Behler J, et al. Multiplatform approach for plasma proteomics: complementarity of olink proximity extension assay technology to mass spectrometry-based protein profiling[J]. J Proteome Res, 2021, 20(1): 751-762. DOI: 10.1021/acs.jproteome.0c00641. |
36. | Vehof J, Rhee A, Rossi N, et al. A large hypothesis-free proteomics study investigating serum inflammatory markers as biomarkers of dry eye disease[J]. Ocul Surf, 2025, 36: 198-208. DOI: 10.1016/j.jtos.2025.01.011. |
37. | Gijs M, Adelaar TI, Vergouwen DPC, et al. Tear fluid inflammatory proteome analysis highlights similarities between keratoconus and allergic conjunctivitis[J/OL]. Invest Ophthalmol Vis Sci, 2023, 64(15): 9[2023-12-01]. https://pubmed.ncbi.nlm.nih.gov/38064228/. DOI: 10.1167/iovs.64.15.9. |
38. | Dionne K, Redfern RL, Nichols JJ, et al. Analysis of tear inflammatory mediators: a comparison between the microarray and Luminex methods[J]. Mol Vis, 2016, 22: 177-188. |
39. | Toprak Tellioglu H, Dikmetas O, Kocabeyoglu S, et al. Comparison of tear cytokines and neuropeptides, ocular surface parameters, and corneal nerve structure in patients with early-stage diabetes mellitus and control subjects[J/OL]. Int Ophthalmol, 2025, 45(1): 119[2025-03-22]. https://pubmed.ncbi.nlm.nih.gov/40119961/. DOI: 10.1007/s10792-025-03502-9. |
40. | Angeles-Han ST, Utz VM, Thornton S, et al. S100 proteins, cytokines, and chemokines as tear biomarkers in children with juvenile idiopathic arthritis-associated uveitis[J]. Ocul Immunol Inflamm, 2021, 29(7-8): 1616-1620. DOI: 10.1080/09273948.2020.1758731. |
41. | Kim JT, Lee SH, Chun YS, et al. Tear cytokines and chemokines in patients with Demodex blepharitis[J]. Cytokine, 2011, 53(1): 94-99. DOI: 10.1016/j.cyto.2010.08.009. |
42. | Shi TT, Zhao RX, Xin Z, et al. Tear-derived exosomal biomarkers of Graves' ophthalmopathy[J/OL]. Front Immunol, 2022, 13: 1088606[2022-12-06]. https://pubmed.ncbi.nlm.nih.gov/36561758/. DOI: 10.3389/fimmu.2022.1088606. |
43. | Cheung N, Mitchell P, Wong TY. Diabetic retinopathy[J]. Lancet, 2010, 376(9735): 124-136. DOI: 10.1016/S0140-6736(09)62124-3. |
44. | Sachdeva MM. Retinal neurodegeneration in diabetes: an emerging concept in diabetic retinopathy[J/OL]. Curr Diab Rep, 2021, 21(12): 65[2021-12-13]. https://pubmed.ncbi.nlm.nih.gov/34902066/. DOI: 10.1007/s11892-021-01428-x. |
45. | Flaxel CJ, Adelman RA, Bailey ST, et al. Diabetic retinopathy preferred practice pattern®[J]. Ophthalmology, 2020, 127(1): 66-145. DOI: 10.1016/j.ophtha.2019.09.025. |
46. | Amorim M, Martins B, Caramelo F, et al. Putative biomarkers in tears for diabetic retinopathy diagnosis[J/OL]. Front Med (Lausanne), 2022, 9: 873483[2022-05-25]. https://pubmed.ncbi.nlm.nih.gov/35692536/. DOI: 10.3389/fmed.2022.873483. |
47. | Costagliola C, Romano V, De Tollis M, et al. TNF-alpha levels in tears: a novel biomarker to assess the degree of diabetic retinopathy[J/OL]. Mediators Inflamm, 2013, 2013: 629529[2013-10-23]. https://pubmed.ncbi.nlm.nih.gov/24259948/. DOI: 10.1155/2013/629529. |
48. | Kim HJ, Kim PK, Yoo HS, et al. Comparison of tear proteins between healthy and early diabetic retinopathy patients[J]. Clin Biochem, 2012, 45(1-2): 60-67. DOI: 10.1016/j.clinbiochem.2011.10.006. |
49. | Machalińska A, Kuligowska A, Ziontkowska-Wrzałek A, et al. The severity of diabetic retinopathy corresponds with corneal nerve alterations and ocular discomfort of the patient[J/OL]. Int J Mol Sci, 2024, 25(11): 6072[2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/38892258/. DOI: 10.3390/ijms25116072. |
50. | Cao N, Feng L, Xu W, et al. Tear glucose is associated with the presence and severity of diabetic retinopathy[J/OL]. Int J Retina Vitreous, 2025, 11(1): 13[2025-02-06]. https://pubmed.ncbi.nlm.nih.gov/39915852/. DOI: 10.1186/s40942-025-00636-x. |
51. | Schmidt-Erfurth U, Garcia-Arumi J, Gerendas BS, et al. Guidelines for the management of retinal vein occlusion by the European Society of Retina Specialists (EURETINA)[J]. Ophthalmologica, 2019, 242(3): 123-162. DOI: 10.1159/000502041. |
52. | Stepanov A, Usharova SA, Malsagova KA, et al. Tear proteome revealed association of S100A family proteins and mesothelin with thrombosis in elderly patients with retinal vein occlusion[J/OL]. Int J Mol Sci, 2022, 23(23): 14653[2022-11-24]. https://pubmed.ncbi.nlm.nih.gov/36498980/. DOI: 10.3390/ijms232314653. |
53. | Kasza M, Balogh Z, Biro L, et al. Vascular endothelial growth factor levels in tears of patients with retinal vein occlusion[J]. Graefe's Arch Clin Exp Ophthalmol, 2015, 253(9): 1581-1586. DOI: 10.1007/s00417-015-3030-2. |
54. | 袁牧之, 林颖, 刘泉. 视网膜静脉阻塞患者血浆和泪液中血管内皮生长因子表达的研究[J]. 眼科新进展, 2016, 36(5): 468-470. DOI: 10.13389/j.cnki.rao.2016.0125.Yuan MZ, Lin Y, Liu Q. Expression of VEGF in plasma and tears of patients with RVO[J]. Rec Adv Ophthalmol, 2016, 36(5): 468-470. DOI: 10.13389/j.cnki.rao.2016.0125. |
55. | Thomas CJ, Mirza RG, Gill MK. Age-related macular degeneration[J]. Med Clin North Am, 2021, 105(3): 473-491. DOI: 10.1016/j.mcna.2021.01.003. |
56. | Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration[J]. Lancet, 2018, 392(10153): 1147-1159. DOI: 10.1016/S0140-6736(18)31550-2. |
57. | Bird AC, Bressler NM, Bressler SB, et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group[J]. Surv Ophthalmol, 1995, 39(5): 367-374. DOI: 10.1016/s0039-6257(05)80092-x. |
58. | Winiarczyk M, Kaarniranta K, Winiarczyk S, et al. Tear film proteome in age-related macular degeneration[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(6): 1127-1139. DOI: 10.1007/s00417-018-3984-y. |
59. | 覃珂, 刘丹宁, 周希瑗. 基于TMT和PRM技术的湿性年龄相关性黄斑变性泪液蛋白质组学研究[J]. 第三军医大学学报, 2021, 43(6): 473-480. DOI: 10.16016/j.1000-5404.202009170.Qin K, Liu DN, Zhou XY. Tear proteomics in neovascular age-related macular degeneration based on TMT and PRM techniques[J]. Journal of Army Medical University, 2021, 43(6): 473-480. DOI: 10.16016/j.1000-5404.202009170. |
60. | Shahidatul-Adha M, Zunaina E, Aini-Amalina MN. Evaluation of vascular endothelial growth factor (VEGF) level in the tears and serum of age-related macular degeneration patients[J/OL]. Sci Rep, 2022, 12(1): 4423[2022-03-15]. https://pubmed.ncbi.nlm.nih.gov/35292705/. DOI: 10.1038/s41598-022-08492-7. |
61. | Yen CY, Chiu CM, Fang IM. MicroRNA expression profiling in tears and blood as predictive biomarkers for anti-VEGF treatment response in wet age-related macular degeneration[J]. Graefe's Arch Clin Exp Ophthalmol, 2024, 262(9): 2875-2884. DOI: 10.1007/s00417-024-06478-x. |
62. | Sabri K, Ells AL, Lee EY, et al. Retinopathy of prematurity: a global perspective and recent developments[J/OL]. Pediatrics, 2022, 150(3): e2021053924[2022-09-01]. https://pubmed.ncbi.nlm.nih.gov/35948728/. DOI: 10.1542/peds.2021-053924. |
63. | Magnani JE, Omar Moinuddin, Mercy Pawar, et al. Quantitative analysis of tear angiogenic factors in retinopathy of prematurity: a pilot biomarker study[J/OL]. J aapos, 2023, 27(1): e1-e6[2022-12-26]. https://pubmed.ncbi.nlm.nih.gov/36581150/. DOI: 10.1016/j.jaapos.2022.10.007. |
64. | Murugeswari P, Vinekar A, Prakalapakorn SG, et al. Correlation between tear levels of vascular endothelial growth factor and vitamin D at retinopathy of prematurity stages in preterm infants[J/OL]. Sci Rep, 2023, 13(1): 16175[2023-09-27]. https://pubmed.ncbi.nlm.nih.gov/37759071/. DOI: 10.1038/s41598-023-43338-w. |
65. | Vinekar A, Nair AP, Sinha S, et al. Early detection and correlation of tear fluid inflammatory factors that influence angiogenesis in premature infants with and without retinopathy of prematurity[J]. Indian J Ophthalmol, 2023, 71(11): 3465-3472. DOI: 10.4103/IJO.IJO_3407_22. |
66. | Baba T, Uotani R, Inata K, et al. Tear fluid cytokine analysis: a non-invasive approach for assessing retinopathy of prematurity severity[J]. Jpn J Ophthalmol, 2024, 68(5): 482-489. DOI: 10.1007/s10384-024-01084-0. |
67. | Wu D, Fan Z, Hu Y, et al. Identifying potential tear biomarkers in premature infants with retinopathy of prematurity based on proteome and transcriptome analysis[J/OL]. Graefe's Arch Clin Exp Ophthalmol, 2025, 2025: E1(2025-06-12)[2025-05-09]. https://pubmed.ncbi.nlm.nih.gov/40343554/. DOI: 10.1007/s00417-025-06838-1.[published online ahead of print]. |
68. | Tsirouki T, Dastiridou A, Symeonidis C, et al. A focus on the epidemiology of uveitis[J]. Ocul Immunol Inflamm, 2018, 26(1): 2-16. DOI: 10.1080/09273948.2016.1196713. |
69. | Carreño E, Portero A, Herreras JM, et al. Cytokine and chemokine tear levels in patients with uveitis[J/OL]. Acta Ophthalmol, 2017, 95(5): e405-e414[2016-11-22]. https://pubmed.ncbi.nlm.nih.gov/27873479/. DOI: 10.1111/aos.13292. |
- 1. Stern ME, Beuerman RW, Fox RI, et al. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands[J]. Cornea, 1998, 17(6): 584-589. DOI: 10.1097/00003226-199811000-00002.
- 2. Zhou L, Beuerman RW. Tear analysis in ocular surface diseases[J]. Prog Retin Eye Res, 2012, 31(6): 527-550. DOI: 10.1016/j.preteyeres.2012.06.002.
- 3. Adigal SS, Rizvi A, Rayaroth NV, et al. Human tear fluid analysis for clinical applications: progress and prospects[J]. Expert Rev Mol Diagn, 2021, 21(8): 767-787. DOI: 10.1080/14737159.2021.1941879.
- 4. Altman J, Jones G, Ahmed S, et al. Tear film microRNAs as potential biomarkers: a review[J/OL]. Int J Mol Sci, 2023, 24(4): 3694[2023-02-12]. https://pubmed.ncbi.nlm.nih.gov/36835108/. DOI: 10.3390/ijms24043694.
- 5. Zhan X, Li J, Guo Y, et al. Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine[J]. EPMA J, 2021, 12(4): 449-475. DOI: 10.1007/s13167-021-00265-y.
- 6. Król-Grzymała A, Sienkiewicz-Szłapka E, Fiedorowicz E, et al. Tear biomarkers in Alzheimer's and Parkinson's diseases, and multiple sclerosis: implications for diagnosis (systematic review)[J/OL]. Int J Mol Sci, 2022, 23(17): 10123[2022-09-04]. https://pubmed.ncbi.nlm.nih.gov/36077520/. DOI: 10.3390/ijms231710123.
- 7. Kumar A, Sharma SP, Agarwal A, et al. Tear IL-6 and IL-10 levels in HLA-B27-associated uveitis and its clinical implications[J]. Ocul Immunol Inflamm, 2021, 29(2): 237-243. DOI: 10.1080/09273948.2019.1704022.
- 8. Tomosugi N, Kitagawa K, Takahashi N, et al. Diagnostic potential of tear proteomic patterns in Sjögren's syndrome[J]. J Proteome Res, 2005, 4(3): 820-825. DOI: 10.1021/pr0497576.
- 9. Pieragostino D, Bucci S, Agnifili L, et al. Differential protein expression in tears of patients with primary open angle and pseudoexfoliative glaucoma[J]. Mol Biosyst, 2012, 8(4): 1017-1028. DOI: 10.1039/c1mb05357d.
- 10. Choi W, Li Z, Oh HJ, et al. Expression of CCR5 and its ligands CCL3, -4, and -5 in the tear film and ocular surface of patients with dry eye disease[J]. Curr Eye Res, 2012, 37(1): 12-17. DOI: 10.3109/02713683.2011.622852.
- 11. Fauquert JL, Kowalski ML. Glycomics in tears: seeking for new biomarkers for ocular allergy diagnosis[J]. Allergy, 2021, 76(8): 2335-2336. DOI: 10.1111/all.14846.
- 12. 张丽, 李建桥. 重视全身疾病的眼部表现[J]. 眼科学报, 2023, 38(5): 365-370. DOI: 10.12419/j.issn.1000-4432.2023.05.01.Zhang L, Li JQ. Attach importance to ocular manifestations of systemic diseases[J]. Eye Science, 2023, 38(5): 365-370. DOI: 10.12419/j.issn.1000-4432.2023.05.01.
- 13. Ghasemi H, Yaraee R, Faghihzadeh S, et al. Tear and serum MMP-9 and serum TIMPs levels in the severe sulfur mustard eye injured exposed patients[J/OL]. Int Immunopharmacol, 2019, 77: 105812[2019-10-31]. https://pubmed.ncbi.nlm.nih.gov/31677500/. DOI: 10.1016/j.intimp.2019.105812.
- 14. Waszczykowska A, Goś R, Waszczykowska E, et al. The role of angiogenesis factors in the formation of vascular changes in scleroderma by assessment of the concentrations of VEGF and sVEGFR2 in blood serum and tear fluid[J/OL]. Mediators Inflamm, 2020, 2020: 7649480[2020-01-24]. https://pubmed.ncbi.nlm.nih.gov/32410862/. DOI: 10.1155/2020/7649480.
- 15. Chen Y, Meng Y, Tan M, et al. Changes in expression of inflammatory cytokines and ocular indicators in pre-diabetic patients with cataract[J/OL]. BMC Ophthalmol, 2025, 25(1): 119[2025-03-10]. https://pubmed.ncbi.nlm.nih.gov/40065310/. DOI: 10.1186/s12886-025-03892-5.
- 16. Ponzini E. Tear biomarkers[J]. Adv Clin Chem, 2024, 120: 69-115. DOI: 10.1016/bs.acc.2024.03.002.
- 17. Beisel A, Jones G, Glass J, et al. Comparative analysis of human tear fluid and aqueous humor proteomes[J]. Ocul Surf, 2024, 33: 16-22. DOI: 10.1016/j.jtos.2024.03.011.
- 18. Pieczyński J, Szulc U, Harazna J, et al. Tear fluid collection methods: review of current techniques[J]. Eur J Ophthalmol, 2021, 31(5): 2245-2251. DOI: 10.1177/1120672121998922.
- 19. Rodney WM, Louie J, Puffer JC. Schirmer's test of lacrimation[J]. Am Fam Physician, 1981, 24(5): 161-164.
- 20. Stuchell RN, Feldman JJ, Farris RL, et al. The effect of collection technique on tear composition[J]. Invest Ophthalmol Vis Sci, 1984, 25(3): 374-377.
- 21. Ablamowicz AF, Nichols JJ. Concentrations of MUC16 and MUC5AC using three tear collection methods[J]. Mol Vis, 2017, 23: 529-537.
- 22. Posa A, Bräuer L, Schicht M, et al. Schirmer strip vs. capillary tube method: non-invasive methods of obtaining proteins from tear fluid[J]. Ann Anat, 2013, 195(2): 137-142. DOI: 10.1016/j.aanat.2012.10.001.
- 23. Iannella G, Di Nardo G, Plateroti R, et al. Investigation of pepsin in tears of children with laryngopharyngeal reflux disease[J]. Int J Pediatr Otorhinolaryngol, 2015, 79(12): 2312-2315. DOI: 10.1016/j.ijporl.2015.10.034.
- 24. Rentka A, Koroskenyi K, Harsfalvi J, et al. Evaluation of commonly used tear sampling methods and their relevance in subsequent biochemical analysis[J]. Ann Clin Biochem, 2017, 54(5): 521-529. DOI: 10.1177/0004563217695843.
- 25. Nättinen J, Aapola U, Jylhä A, et al. Comparison of capillary and schirmer strip tear fluid sampling methods using SWATH-MS proteomics approach[J/OL]. Transl Vis Sci Technol, 2020, 9(3): 16[2020-02-13]. https://pubmed.ncbi.nlm.nih.gov/32714642/. DOI: 10.1167/tvst.9.3.16.
- 26. Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA)[J]. Clin Chem, 2005, 51(12): 2415-2418. DOI: 10.1373/clinchem.2005.051532.
- 27. Antman G, Ritzer L, Galor A, et al. The relationship between dry eye disease and human microbiota: a review of the science[J/OL]. Exp Eye Res, 2024, 245: 109951[2024-06-03]. https://pubmed.ncbi.nlm.nih.gov/38838972/. DOI: 10.1016/j.exer.2024.109951.
- 28. Zhu H, Snyder M. Protein chip technology[J]. Curr Opin Chem Biol, 2003, 7(1): 55-63. DOI: 10.1016/s1367-5931(02)00005-4.
- 29. Bao J, Zhang P, Wu B, et al. Gp130 promotes inflammation via the STAT3/JAK2 pathway in allergic conjunctivitis[J/OL]. Invest Ophthalmol Vis Sci, 2023, 64(4): 5[2023-04-03]. https://pubmed.ncbi.nlm.nih.gov/37022703/. DOI: 10.1167/iovs.64.4.5.
- 30. Song RH, Wang B, Yao QM, et al. Proteomics screening of differentially expressed cytokines in tears of patients with Graves' ophthalmopathy[J]. Endocr Metab Immune Disord Drug Targets, 2020, 20(1): 87-95. DOI: 10.2174/1871530319666190618142215.
- 31. Zhou Y, Ma B, Liu Q, et al. Transmembrane protein CMTM6 alleviates ocular inflammatory response and improves corneal epithelial barrier function in experimental dry eye[J/OL]. Invest Ophthalmol Vis Sci, 2024, 65(1): 4[2024-01-02]. https://pubmed.ncbi.nlm.nih.gov/38165704/. DOI: 10.1167/iovs.65.1.4.
- 32. Kim E, Kim J, Choi I, et al. Organic matrix-free imaging mass spectrometry[J]. BMB Rep, 2020, 53(7): 349-356. DOI: 10.5483/BMBRep.2020.53.7.078.
- 33. Croxatto A, Prod'hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology[J]. FEMS Microbiol Rev, 2012, 36(2): 380-407. DOI: 10.1111/j.1574-6976.2011.00298.x.
- 34. Ponzini E, Santambrogio C, De Palma A, et al. Mass spectrometry-based tear proteomics for noninvasive biomarker discovery[J]. Mass Spectrom Rev, 2022, 41(5): 842-860. DOI: 10.1002/mas.21691.
- 35. Petrera A, von Toerne C, Behler J, et al. Multiplatform approach for plasma proteomics: complementarity of olink proximity extension assay technology to mass spectrometry-based protein profiling[J]. J Proteome Res, 2021, 20(1): 751-762. DOI: 10.1021/acs.jproteome.0c00641.
- 36. Vehof J, Rhee A, Rossi N, et al. A large hypothesis-free proteomics study investigating serum inflammatory markers as biomarkers of dry eye disease[J]. Ocul Surf, 2025, 36: 198-208. DOI: 10.1016/j.jtos.2025.01.011.
- 37. Gijs M, Adelaar TI, Vergouwen DPC, et al. Tear fluid inflammatory proteome analysis highlights similarities between keratoconus and allergic conjunctivitis[J/OL]. Invest Ophthalmol Vis Sci, 2023, 64(15): 9[2023-12-01]. https://pubmed.ncbi.nlm.nih.gov/38064228/. DOI: 10.1167/iovs.64.15.9.
- 38. Dionne K, Redfern RL, Nichols JJ, et al. Analysis of tear inflammatory mediators: a comparison between the microarray and Luminex methods[J]. Mol Vis, 2016, 22: 177-188.
- 39. Toprak Tellioglu H, Dikmetas O, Kocabeyoglu S, et al. Comparison of tear cytokines and neuropeptides, ocular surface parameters, and corneal nerve structure in patients with early-stage diabetes mellitus and control subjects[J/OL]. Int Ophthalmol, 2025, 45(1): 119[2025-03-22]. https://pubmed.ncbi.nlm.nih.gov/40119961/. DOI: 10.1007/s10792-025-03502-9.
- 40. Angeles-Han ST, Utz VM, Thornton S, et al. S100 proteins, cytokines, and chemokines as tear biomarkers in children with juvenile idiopathic arthritis-associated uveitis[J]. Ocul Immunol Inflamm, 2021, 29(7-8): 1616-1620. DOI: 10.1080/09273948.2020.1758731.
- 41. Kim JT, Lee SH, Chun YS, et al. Tear cytokines and chemokines in patients with Demodex blepharitis[J]. Cytokine, 2011, 53(1): 94-99. DOI: 10.1016/j.cyto.2010.08.009.
- 42. Shi TT, Zhao RX, Xin Z, et al. Tear-derived exosomal biomarkers of Graves' ophthalmopathy[J/OL]. Front Immunol, 2022, 13: 1088606[2022-12-06]. https://pubmed.ncbi.nlm.nih.gov/36561758/. DOI: 10.3389/fimmu.2022.1088606.
- 43. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy[J]. Lancet, 2010, 376(9735): 124-136. DOI: 10.1016/S0140-6736(09)62124-3.
- 44. Sachdeva MM. Retinal neurodegeneration in diabetes: an emerging concept in diabetic retinopathy[J/OL]. Curr Diab Rep, 2021, 21(12): 65[2021-12-13]. https://pubmed.ncbi.nlm.nih.gov/34902066/. DOI: 10.1007/s11892-021-01428-x.
- 45. Flaxel CJ, Adelman RA, Bailey ST, et al. Diabetic retinopathy preferred practice pattern®[J]. Ophthalmology, 2020, 127(1): 66-145. DOI: 10.1016/j.ophtha.2019.09.025.
- 46. Amorim M, Martins B, Caramelo F, et al. Putative biomarkers in tears for diabetic retinopathy diagnosis[J/OL]. Front Med (Lausanne), 2022, 9: 873483[2022-05-25]. https://pubmed.ncbi.nlm.nih.gov/35692536/. DOI: 10.3389/fmed.2022.873483.
- 47. Costagliola C, Romano V, De Tollis M, et al. TNF-alpha levels in tears: a novel biomarker to assess the degree of diabetic retinopathy[J/OL]. Mediators Inflamm, 2013, 2013: 629529[2013-10-23]. https://pubmed.ncbi.nlm.nih.gov/24259948/. DOI: 10.1155/2013/629529.
- 48. Kim HJ, Kim PK, Yoo HS, et al. Comparison of tear proteins between healthy and early diabetic retinopathy patients[J]. Clin Biochem, 2012, 45(1-2): 60-67. DOI: 10.1016/j.clinbiochem.2011.10.006.
- 49. Machalińska A, Kuligowska A, Ziontkowska-Wrzałek A, et al. The severity of diabetic retinopathy corresponds with corneal nerve alterations and ocular discomfort of the patient[J/OL]. Int J Mol Sci, 2024, 25(11): 6072[2024-05-31]. https://pubmed.ncbi.nlm.nih.gov/38892258/. DOI: 10.3390/ijms25116072.
- 50. Cao N, Feng L, Xu W, et al. Tear glucose is associated with the presence and severity of diabetic retinopathy[J/OL]. Int J Retina Vitreous, 2025, 11(1): 13[2025-02-06]. https://pubmed.ncbi.nlm.nih.gov/39915852/. DOI: 10.1186/s40942-025-00636-x.
- 51. Schmidt-Erfurth U, Garcia-Arumi J, Gerendas BS, et al. Guidelines for the management of retinal vein occlusion by the European Society of Retina Specialists (EURETINA)[J]. Ophthalmologica, 2019, 242(3): 123-162. DOI: 10.1159/000502041.
- 52. Stepanov A, Usharova SA, Malsagova KA, et al. Tear proteome revealed association of S100A family proteins and mesothelin with thrombosis in elderly patients with retinal vein occlusion[J/OL]. Int J Mol Sci, 2022, 23(23): 14653[2022-11-24]. https://pubmed.ncbi.nlm.nih.gov/36498980/. DOI: 10.3390/ijms232314653.
- 53. Kasza M, Balogh Z, Biro L, et al. Vascular endothelial growth factor levels in tears of patients with retinal vein occlusion[J]. Graefe's Arch Clin Exp Ophthalmol, 2015, 253(9): 1581-1586. DOI: 10.1007/s00417-015-3030-2.
- 54. 袁牧之, 林颖, 刘泉. 视网膜静脉阻塞患者血浆和泪液中血管内皮生长因子表达的研究[J]. 眼科新进展, 2016, 36(5): 468-470. DOI: 10.13389/j.cnki.rao.2016.0125.Yuan MZ, Lin Y, Liu Q. Expression of VEGF in plasma and tears of patients with RVO[J]. Rec Adv Ophthalmol, 2016, 36(5): 468-470. DOI: 10.13389/j.cnki.rao.2016.0125.
- 55. Thomas CJ, Mirza RG, Gill MK. Age-related macular degeneration[J]. Med Clin North Am, 2021, 105(3): 473-491. DOI: 10.1016/j.mcna.2021.01.003.
- 56. Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration[J]. Lancet, 2018, 392(10153): 1147-1159. DOI: 10.1016/S0140-6736(18)31550-2.
- 57. Bird AC, Bressler NM, Bressler SB, et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group[J]. Surv Ophthalmol, 1995, 39(5): 367-374. DOI: 10.1016/s0039-6257(05)80092-x.
- 58. Winiarczyk M, Kaarniranta K, Winiarczyk S, et al. Tear film proteome in age-related macular degeneration[J]. Graefe's Arch Clin Exp Ophthalmol, 2018, 256(6): 1127-1139. DOI: 10.1007/s00417-018-3984-y.
- 59. 覃珂, 刘丹宁, 周希瑗. 基于TMT和PRM技术的湿性年龄相关性黄斑变性泪液蛋白质组学研究[J]. 第三军医大学学报, 2021, 43(6): 473-480. DOI: 10.16016/j.1000-5404.202009170.Qin K, Liu DN, Zhou XY. Tear proteomics in neovascular age-related macular degeneration based on TMT and PRM techniques[J]. Journal of Army Medical University, 2021, 43(6): 473-480. DOI: 10.16016/j.1000-5404.202009170.
- 60. Shahidatul-Adha M, Zunaina E, Aini-Amalina MN. Evaluation of vascular endothelial growth factor (VEGF) level in the tears and serum of age-related macular degeneration patients[J/OL]. Sci Rep, 2022, 12(1): 4423[2022-03-15]. https://pubmed.ncbi.nlm.nih.gov/35292705/. DOI: 10.1038/s41598-022-08492-7.
- 61. Yen CY, Chiu CM, Fang IM. MicroRNA expression profiling in tears and blood as predictive biomarkers for anti-VEGF treatment response in wet age-related macular degeneration[J]. Graefe's Arch Clin Exp Ophthalmol, 2024, 262(9): 2875-2884. DOI: 10.1007/s00417-024-06478-x.
- 62. Sabri K, Ells AL, Lee EY, et al. Retinopathy of prematurity: a global perspective and recent developments[J/OL]. Pediatrics, 2022, 150(3): e2021053924[2022-09-01]. https://pubmed.ncbi.nlm.nih.gov/35948728/. DOI: 10.1542/peds.2021-053924.
- 63. Magnani JE, Omar Moinuddin, Mercy Pawar, et al. Quantitative analysis of tear angiogenic factors in retinopathy of prematurity: a pilot biomarker study[J/OL]. J aapos, 2023, 27(1): e1-e6[2022-12-26]. https://pubmed.ncbi.nlm.nih.gov/36581150/. DOI: 10.1016/j.jaapos.2022.10.007.
- 64. Murugeswari P, Vinekar A, Prakalapakorn SG, et al. Correlation between tear levels of vascular endothelial growth factor and vitamin D at retinopathy of prematurity stages in preterm infants[J/OL]. Sci Rep, 2023, 13(1): 16175[2023-09-27]. https://pubmed.ncbi.nlm.nih.gov/37759071/. DOI: 10.1038/s41598-023-43338-w.
- 65. Vinekar A, Nair AP, Sinha S, et al. Early detection and correlation of tear fluid inflammatory factors that influence angiogenesis in premature infants with and without retinopathy of prematurity[J]. Indian J Ophthalmol, 2023, 71(11): 3465-3472. DOI: 10.4103/IJO.IJO_3407_22.
- 66. Baba T, Uotani R, Inata K, et al. Tear fluid cytokine analysis: a non-invasive approach for assessing retinopathy of prematurity severity[J]. Jpn J Ophthalmol, 2024, 68(5): 482-489. DOI: 10.1007/s10384-024-01084-0.
- 67. Wu D, Fan Z, Hu Y, et al. Identifying potential tear biomarkers in premature infants with retinopathy of prematurity based on proteome and transcriptome analysis[J/OL]. Graefe's Arch Clin Exp Ophthalmol, 2025, 2025: E1(2025-06-12)[2025-05-09]. https://pubmed.ncbi.nlm.nih.gov/40343554/. DOI: 10.1007/s00417-025-06838-1.[published online ahead of print].
- 68. Tsirouki T, Dastiridou A, Symeonidis C, et al. A focus on the epidemiology of uveitis[J]. Ocul Immunol Inflamm, 2018, 26(1): 2-16. DOI: 10.1080/09273948.2016.1196713.
- 69. Carreño E, Portero A, Herreras JM, et al. Cytokine and chemokine tear levels in patients with uveitis[J/OL]. Acta Ophthalmol, 2017, 95(5): e405-e414[2016-11-22]. https://pubmed.ncbi.nlm.nih.gov/27873479/. DOI: 10.1111/aos.13292.