1. |
Biber J, Gandor C, Becirovic E, et al Retina-directed gene therapy: achievements and remaining challenges[J/OL]. Pharmacol Ther, 2025, 271: 108862[2025-04-21]. https://pubmed.ncbi.nlm.nih.gov/40268248/. DOI: 10.1016/j.pharmthera.2025.108862.
|
2. |
Schneider N, Sundaresan Y, Gopalakrishnan P, et al. Inherited retinal diseases: linking genes, disease-causing variants, and relevant therapeutic modalities[J/OL]. Prog Retin Eye Res, 2022, 101029[2021-11-25]. https://pubmed.ncbi.nlm.nih.gov/34839010/. DOI: 10.1016/j.preteyeres.2021.101029.
|
3. |
Wang JH, Gessler DJ, Zhan W, et al. Adeno-associated virus as a delivery vector for gene therapy of human diseases[J/OL]. Signal Transduct Target Ther, 2024, 9(1): 78[2024-04-03]. https://pubmed.ncbi.nlm.nih.gov/38565561/. DOI: 10.1038/s41392-024-01780-w.
|
4. |
Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C, et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR[J]. Nat Med, 2020, 26(3): 354-359. DOI: 10.1038/s41591-020-0763-1.
|
5. |
Michaelides M, Laich Y, Wong SC, et al. Gene therapy in children with AIPL1-associated severe retinal dystrophy: an open-label, first-in-human interventional study[J]. Lancet, 2025, 405(10479): 648-657. DOI: 10.1016/S0140-6736(24)02812-5.
|
6. |
Yang P, Pardon LP, Ho AC, et al. Safety and efficacy of ATSN-101 in patients with Leber congenital amaurosis caused by biallelic mutations in GUCY2D: a phase 1/2, multicentre, open-label, unilateral dose escalation study[J]. Lancet, 2024, 404(10456): 962-970. DOI: 10.1016/S0140-6736(24)01447-8.
|
7. |
Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber's congenital amaurosis[J]. N Engl J Med, 2015, 372(20): 1887-1897. DOI: 10.1056/NEJMoa1414221.
|
8. |
Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells[J]. Science, 2014, 343(6166): 84-87. DOI: 10.1126/science.1247005.
|
9. |
Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424. DOI: 10.1038/nature17946.
|
10. |
Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471. DOI: 10.1038/nature24644.
|
11. |
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157. DOI: 10.1038/s41586-019-1711-4.
|
12. |
Pierce EA, Aleman TS, Jayasundera KT, et al. Gene editing for CEP290-associated retinal degeneration[J]. N Engl J Med, 2024, 390(21): 1972-1984. DOI: 10.1056/NEJMoa2309915.
|
13. |
Geilenkeuser J, Armbrust N, Steinmaßl E, et al. Engineered nucleocytosolic vehicles for loading of programmable editors[J]. Cell, 2025, 188(10): 2637-2655. DOI: 10.1016/j.cell.2025.03.015.
|
14. |
An M, Raguram A, Du SW, et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo[J]. Nat Biotechnol, 2024, 42(10): 1526-1537. DOI: 10.1038/s41587-023-02078-y.
|
15. |
Hołubowicz R, Du SW, Felgner J, et al. Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations[J]. Nat Biomed Eng, 2025, 9(1): 57-78. DOI: 10.1038/s41551-024-01296-2.
|
16. |
Herrera-Barrera M, Ryals RC, Gautam M, et al. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates[J/OL]. Sci Adv, 2023, 9(2): eadd4623[2023-01-13]. https://pubmed.ncbi.nlm.nih.gov/36630502/. DOI: 10.1126/sciadv.add4623.
|
17. |
Musunuru K, Grandinette SA, Wang X, et al. Patient-specific in vivo gene editing to treat a rare genetic disease[J]. N Engl J Med, 2025, 392(22): 2235-2243. DOI: 10.1056/NEJMoa2504747.
|