ObjectiveTo investigate the effects and mechanisms of G protein-coupled receptor 91 (GPR91) on blood-retinal barrier (BRB) in diabetic rats. MethodsA lentiviral vector of shRNA targeting rat GPR91 and scrambled shRNA were constructed. Healthy male Sprague-Dawley (SD) rats were selected in this study. The 60 rats were randomized into 4 groups and treated as follows:(1) control group (Group A, n=15), the rats received injections of an equal volume of 0.1% citrate buffer; (2) streptozocin (STZ) group (Group B, n=15), the rats received injections of STZ; (3) LV.shScrambled group (Group C, n=15), diabetic rats received an intravitreal injection of 1 μl 1×108 TU/ml scrambled shRNA lentiviral particles at 2 weeks after the induction of diabetes; (4) LV.shGPR91 group (Group D, n=15), diabetic rats received an intravitreal injection of 1 μl 1×108 TU/ml pGCSIL-GFP-shGPR91 lentiviral particles. At 12 weeks after intravitreal injection, immunohistochemistry and Western blot were used to assess the expression of GPR91, p-extracellular signal-regulated kinase(ERK)1/2, t-ERK1/2, p-Jun N-terminal kinase (JNK), t-JNK, p-p38 mitogen-activated protein kinase (MAPK) and t-p38 MAPK. Haematoxylin and eosin (HE) staining and Evans blue dye were used to assess the structure and function of the retinal vessel. Immunohistochemistry enzyme-linked immunosorbent assay (ELISA) was used to test the protein level of VEGF. ResultsImmunohistochemistry staining showed that GPR91 was predominantly localized to the cell bodies of the ganglion cell layer. Western blot showed that GPR91 expression in Group D decreased significantly compared with Group C (F=39.31, P < 0.01). HE staining showed that the retina tissue in Group B and C developed telangiectatic vessels in the inner layer of retina, while the telangiectatic vessels attenuated in Group D. It was also demonstrated in Evans blue dye that the microvascular leakage in Group D decreased by (33.8±4.11)% compared with Group C and there was significant difference (F=30.35, P < 0.05). The results of ELISA showed the VEGF secretion of Group B and C increased compared with Group A and the VEGF expression in Group D was significantly down regulated after silencing GPR91 gene (F=253.15, P < 0.05).The results of Western blot indicated that compared with Group A, the expressions of p-ERK1/2, p-JNK and p-p38 MAPK were significantly upregulated (q=6.38, 2.94, 3.45;P < 0.05). Meanwhile, the activation of ERK1/2 was inhibited by GPR91 shRNA and the difference was statistically significant (F=22.50, P < 0.05). ConclusionsThe intravitreal injection of GPR91 shRNA attenuated the leakage of BRB in diabetic rats. GPR91 regulated the VEGF release and the leakage of BRB possibly through the ERK1/2 signaling pathway.
The fundus lesions caused by high myopia (HM) often lead to irreversible visual impairment or even blindness. However, the pathogenesis of HM and its fundus lesions is still unclear, the intraocular fluid detection technology of micro samples has brought new prospects for the early diagnosis, monitoring and intervention of the fundus lesions. The molecules associated with HM are various and functionally diverse, intermolecular interactions are staggered and the specific mechanism is complex. With the development of intraocular fluid detection technology, while gradually revealing the role of each molecule in the pathogenesis of HM, it is expected to successfully assist clinical work in the future, providing outpost markers for the progress of myopia and targets for early intervention, or providing a new therapy choice for HM fundus lesions at the molecular level targeting pathogenesis, which is expected to provide more accurate and effective treatment for HM patients in the future.
PURPOSE:To verify existance of a-,~-,and 3'-protein kinase C(PKC)subspecies and their localization in rabbit retina. METHODS: Using an immunohistoehemical technique with mono- elonal antibodies against PKC isozymes- I (a),-I[ (13),and -~[ (Y) to characterize the distribution of PKC in rabbit retina. RESULTS:There is a positive immunostaining for a-,13-,and ~-PKC in rabbit retina. The immunoreactivity of a-PKC was observed mainly in the bipolar cells of inner nuclear layer and the outer segments of photorecptors. The positive immunostaining of 13-PKC could be seen in the ganglion cells,inner plexiform layer,inner nuclear layer,and the outer segments of photoreceptors. A diffuse and weak staining of Y-PKC is recognized in the ganglion cell layer,inner plexifrom layer,inner nuclear layer, and the outer segments of photoreceptors. CONCLUSION:The protein kinase C sub- speeies-a,-~,and-'Y are present in retina which is a part of the central nervous system
Objective To investigate the alteration of protein kinase C (PKC) and endothelin system in early diabetic rats, and the effect of specific PKC inhibitor on the expression of retinal endothelin-1 (ET-1). Methods The rats model with streptozotocin(STZ)-induced diabetes were set up. The expression of retinal PKC was detected by enzyme-linked immunoabsorbent assay (ELISA). The expression of retinal ET-1, ET-3, ET-A and ET-B receptor mRNA was determined by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). The alteration of retinal ET-1 mRNA after intravitreal injection of PKC inhibitor GF109203X in diabetic rats was also observed. Results The activities of membranous PKC were significantly increased in 2-week diabetic rats compared with that in normal rats(t=3.296 , P=0.008), while activities of cytosolic PKC were unchangeable(t=0.138, P=0.894). The expression of retinal ET-1 mRNA was significantly increased(P=0.008), while no change was found in expression of ET-3, ET-A and ET-B mRNA(P=0.918,P=0.889,P=0.500). After intravitreal in jection of 10-5、10-6、10-7 mol/L PKC inhibitor GF109203X in diabetic rats, the expression of retinal ET-1 mRNA was decreased in a dose-dependent manner compared with the control rats. Conclusion Activation of PKC and increased expression of ET-1 could be found in the retina of early diabetic rats, and PKC inhibitor could inhibit the expression of retinal ET-1. (Chin J Ocul Fundus Dis,2004,20:168-171)
Objective To investigate the expression of protein gene product 9.5 (PGP9.5) in human gastric cancer, and to find out the relations between its expression and carcinogenesis, invasion and metastasis of gastric cancer. Methods The expression of PGP9.5 was detected by immunohistochemistry (SP) and Western blot in 80 samples of gastric cancer and 8 samples of normal gastric tissues. Results ①Of 80 gastric cancer specimens examined, 56 cases (70.0%) showed staining with PGP9.5 in most tumor cells, whereas no PGP9.5 expression was detected in normal epithelium, which was consistent with the results of Western blot. ②The results of immunohistochemistry revealed that there were significantly correlations between the expression of PGP9.5 and the depth of invasion, the degree of differentiation, and the occurrence of lymph node metastasis (Plt;0.05), respectively; yet, there were no relation between the expression of PGP9.5 and age, gender, histopathologic type and TNM stage (Pgt;0.05). Conclusion PGP9.5 may play an important role in the invasion and metastasis of gastric cancer, and the invasion of gastric cancer could be detected by PGP9.5, which may be a useful molecular marker.
ObjectiveTo explore and analyze the nutritional risk and dietary intake of patients with coronavirus disease 2019 (COVID-19), and provide data support for nutritional intervention.MethodsCOVID-19 inpatients were investigated in Wuhan Wuchang Hospital and the People’s Hospital of Wuhan University (East Area) from March 9th to 16th, 2020 by Nutrition Risk Screening 2002 (NRS 2002) scale and designed questionnaire. The energy and protein requirements were calculated according to the standard of 30 kcal/(kg·d) and 1.2 g/(kg·d). The nutritional risk, energy and protein intake, body weight and body mass index and their changes in the mild and severe patients were analyzed. The energy and protein intake of the two types of nutritional risk patients was analyzed.ResultsA total of 98 patients with COVID-19 completed the investigation, in whom 46 (46.94%) had nutritional risk, including 32 (39.02%) with mild type and 14 (87.50%) with severe type; and the difference was statistically significant (P<0.001). Compared with the usual condition, the body weight and body mass index of the two types of patients significantly decreased (P<0.01 or P<0.001); the energy and protein intake in mild type patients were significantly higher than those in the severe type patients (P<0.001); compared with the requirement, the protein intake in the two types of patients were significantly lower than the demand, while the energy and protein intake in the mild type patients were significantly lower than the requirement (P<0.05 or P<0.01). The proportion of energy and protein intakes in patients with nutritional risk was significantly higher than that in patients without nutritional risk (P<0.001 or P<0.01); the energy and protein intakes in patients without nutritional risk was significantly higher than that in patients with nutritional risk (P<0.001); the protein intakes in patients with nutritional risk was obviously insufficient (P<0.001); while the energy intake of the patients without nutritional risk was higher than the requirement (P<0.001).ConclusionsCOVID-19 patients has high incidence of nutritional risk which was higher in the severe patients compared with the mild patients. Higher incidence and lower intake of energy and protein are in the severe patients compared with those in the mild patients. Patients with nutritional risk has a higher proportion of energy and protein inadequate intake and lower intake compared with the patients without nutritional risk.
Abstract: Objective To study the changes of the cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) expression of isolated rat hearts after diazoxide preconditioning (DPC), and to explore the possible mechanism of cAMP signaling pathway in myocardial protection by DPC. Methods Isolated working heart Langendorff perfusion models of 40 Wistar rats were set up and were divided randomly into four groups. For the ischemia reperfusion injury(I/R) group (n=10), 30 min of equilibrium perfusion was followed by a 60 min reperfusion of KrebsHenseleit (K-H) fluid. The DPC group (n=10) had a 10 min equilibrium perfusion and two cycles of 5 min of 100 μmol/L diazoxide perfusion followed by a 5 min diazoxidefree period before the 30 min ischemia and the 60 min reperfusion of K-H fluid. The blank control group (control group, n=10) and the Dimethyl Sulphoxide(DMSO) group (n=10) were perfused with the same treatment as in the DPC group except that diazoxide was replaced by natriichloridum and DMSO respectively. The activity of creatine kinase (CK) in coronary outflow, the activity of malonyldialdehyde (MDA) and superoxide dismutase (SOD) in myocardium were detected. And the scope of myocardial infarction and the concentrations of myocardial cAMP and PKA were also assessed. Results Compared with the I/R group, the level of MDA for the DPC group decreased significantly (8.28±2.04 nmol/mg vs. 15.52±2.18 nmol/mg, q=11.761,Plt;0.05), the level of SOD increased significantly (621.39±86.23 U/mg vs. 477.48±65.20 U/mg, q=5.598,Plt;0.05). After a 30 min reperfusion, compared with the I/R group, the content of CK decreased significantly (82.55±10.08 U/L vs. 101.64±19.24 U/L, q=5.598, Plt;0.05) and the infarct size reduced significantly (5.63%±9.23% vs.17.58%±5.76%, q=6.176,Plt;0.05) in the DPC group. The cAMP concentration in the DPC group was much higher than that in the I/R group (0.64±0.07 pmol/g vs. 0.34±0.05 pmol/g, q=14.738,Plt;0.05), and PKA concentration was also much higher than that in the I/R group [17.13±1.57 pmol/(L·min·mg) vs. 12.85±2.01 pmol/(L·min·mg), Plt;0.05]. However, there were no significant differences between the I/R group, DMSO group and the control group in the above indexs (Pgt;0.05). Conclusion DPC significantly improves the releasing of cAMP and PKA, decreases oxygen free radicals, and relieves myocardial ischemia reperfusion injury. The cAMP signaling pathway may be involved in triggering the process of myocardial protection mechanisms of DPC.
Objective To investigate the effects of exosomes from cultured human retinal pigment epithelium (ARPE-19) cells affected by oxidative stress on the proliferation and expression of vascular endothelial growth factor-A (VEGF-A) and Akt of ARPE-19 cells. Methods Culture ARPE-19 cells. The concentration of 2.5 μmol/L rotenone was selected to simulate oxidative stress and isolated ARPE-19-exosome. Exosomes were isolated by ExoQuick exosome precipitation solution. Transmission electron microscopy was used to identify the morphology of exosomes. Western blot was used to detect exosomes’ surface-specific maker protein CD63. ARPE-19 cells affected by oxidative stress were cultured with exosome as experimental group, normal ARPE-19 cells were cultured with exosome as control group. The cell proliferation was examined by methyl thiazolyl tetrazolium assay. Western blot and immunofluorescence assay were used to detect the expression levels of VEGF-A and Akt protein. Real-time quantitative polymerase chain reaction (RT-PCR) was used to detect the levels of VEGF-A mRNA and Akt mRNA. Results The diameter of normal ARPE-19-exosomes ranged from 50 to 150 nm. The isolated exosomes expressed CD63. AREP-19 cells were cultured with ARPE-19 (affected by rotenone)-exosome, the cell viability in experimental group was significantly reduced than in the control group. Green fluorescence was observed in the cytoplasm under fluorescence microscope. Compared with the control group, VEGF-A was up-regulated expressed and Akt was down-regulated expressed. Western blot results showed that, VEGF-A protein expression in the experimental group were higher than the control group. Akt protein expression in the experimental group were less than the control group. The difference was statically significant (t=3.822, 6.527;P<0.05). RT-PCR results showed that VEGF-A mRNA expression levels was higher in the experimental group than the control group. Akt mRNA expression levels was lower in the experimental group than the control group. The difference was statically significant (t=8.805, −7.823;P<0.05). Conclusions Exosomes from ARPE-19 cells affected by oxidative stress inhibit the proliferation of normal ARPE-19 cells, increase the expression of VEGF-A and reduce the expression of Akt.
The occurrence and development of myopia is closely related to scleral remodeling. Therefore, in order to effectively prevent and cure myopia, it is very important to clarify the mechanism of scleral remodeling. In recent years, Chinese scholars have found that endoplasmic reticulum stress can regulate the expression of apoptotic proteins through the inositol demand protein-1/X box binding protein-1 pathway in the unfolded protein response, thus it is involved in regulating the state of scleral fibroblasts under hypoxia and regulating the occurrence and development of scleral remodeling. At the same time, some studies have found that inhibiting and knocking out protein kinase RNA-like endoplasmic reticulum kinase and activated transcription factor 6 in endoplasmic reticulum stress can effectively inhibit the growth of ocular axis. This proves that endoplasmic reticulum stress plays an important role in the occurrence and development of scleral remodeling. However, the comprehensive analysis of endoplasmic reticulum stress and scleral remodeling has not been reported at home and abroad. In-depth analysis of the relationship between endoplasmic reticulum and scleral remodeling is of great significance for the follow-up analysis and study of the mechanism of scleral remodeling.
Mutations in the BEST1 gene are associated with a range of retinal diseases collectively referred to as "Best diseases", including Best vitelline macular dystrophy. More than 300 mutations at different sites of the BEST1 gene have been found, which may cause a series of functional disorders such as the mistransport of the calcium-activated anion channel protein-1 protein encoded by it, protein oligomerization defects, and abnormal anion channel activity, leading to different clinical phenotypes. Although it has been established that the BEST1 gene mutation is associated with at least one different type of Best disease, the relationship between the specific gene mutation site and the specific clinical phenotype has not been fully defined. For the time being. Drugs and gene therapy for the Best diseases are still in the basic research stage, which provides a broad development space for future treatment exploration. In the future, when selecting gene therapy in clinical applications, it is necessary to combine the clinical phenotype and molecular diagnosis of patients, and clearly define their mutation types and pathogenic mechanisms in order to achieve better personalized treatment effects.