ObjectiveTo summarize the relationship between exosome and thyroid diseases.MethodThe literatures reports on exosomes and the physiology, pathology and diseases of thyroid were collected and reviewed.ResultsExosomes were secreted by cells and could be found in various body fluids, which could mediate the normal physiological development of the thyroid gland and play an important role in the progression of Graves’ disease. Exosomes could be used as diagnostic and differential diagnostic biomarkers for thyroid cancer and affect the growth, invasion, and metastasis of thyroid cancer. As a drug carrier for anti-thyroid cancer, exosome had a good targeting ability.ConclusionExosomes play an important role in the development of various diseases of the thyroid gland, which have good application prospects in biomarkers for early diagnosis and prognostic evaluation, as well as targeted drug carriers for thyroid cancer.
ObjectiveTo understand the research progress of related biomarkers in early diagnosis of gastric cancer in recent years.MethodThe domestic and foregin literatures on studies of biomarkers of early diagnosis of gastric cancer in recent years were reviewed.ResultsAt present, the sensitivity and specificity of serum tumor biomarkers of gastric cancer such as CEA and CA19-9 were lower, so the molecular markers that could predict, screen, and diagnose gastric cancer in the early stage were further explored. The recent studies suggested that microRNAs, long non-coding RNAs, circular RNAs, exosome, etc. molecular markers in early diagnosis of gastric cancer had better prospects of clinilal application.ConclusionWith the continuous development of molecular biology technology, the values of microRNAs, long non-coding RNAs, circular RNAs, DNA, etc. in early diagnosis of gastric cancer would be further explored.
ObjectiveTo investigate the regulatory role of MSC-derived exosomes in obliterative bronchiolitis after lung transplantation. MethodsThe murine lung transplantation model was established with male C57BL/6 mice, and the mice were divided into a sham group (sham, n=6), a surgery group (OB, n=6), and a treatment group (OB+MSC-exo, n=6). The in vitro model was created by stimulating RAW264.7 with lipopolysaccharide+nigericin (LPS+Nigericin), and comprised a PBS group, a LPS+Nigericin group, and a LPS+Nigericin+MSC-exo group. Immunofluorescence and hematoxylin-eosin (HE) staining were used to analyze gasdermin D (GSDMD) expression, as well as lumen stenosis in lung grafts. Bioinformatics methods were employed to predict and screen target gene collagen type V alpha 1 (COL5A1). Q-PCR was used to measure mRNA expression levels of interleukin (IL)-1β, IL-18, IL-6, tumor necrosis factor-α (TNF-α), and COL5A1 in lung grafts and macrophages. Western blot was performed to detect Cleaved-Caspase 1 protein expression in lung grafts and GSDMD protein expression in macrophages. ResultsImmunofluorescence and HE staining revealed that in vivo infusion of MSC-exo reduced GSDMD expression in grafts, ameliorated tracheal epithelial cilia loss and lumen stenosis, and decreased Cleaved-Caspase 1 protein as well as IL-1β and IL-18 mRNA expression. MSC-exo treatment or COL5A1 knockdown reduced IL-1β, IL-18, IL-6, and TNF-α mRNA expression in macrophages, with comparable efficacy. MSC-exo infusion also decreased the number of COL5A1+ cells and mRNA expression levels in lung grafts. ConclusionMSC-derived exosomes alleviate obliterative bronchiolitis after lung transplantation by inhibiting COL5A1.
ObjectiveTo explore the involvement of miR-126 and the role of mammalian target of rapamycin (mTOR)/hypoxia-induced factor 1 α (HIF-1 α) pathway in regulating human umbilical cord mesenchymal stem cells (hUCMSCs) exosomes (Exo) on vascular endothelial growth factor (VEGF)-A levels in high glucose-induced human retinal vascular endothelial cells (HRECs). MethodsThe hREC was cultured in EGM-2-MV endothelial cell culture medium with 30 mmol/L glucose and placed in hypoxic cell incubator by 1% oxygen concentration. The cell model of high glucose and low oxygen was established. After modeling, divided HRECs into Exo group, phosphate buffer saline (PBS) group, PBS+anti-miR126 group, Exo+anti-miR126 group, PBS+anti-mTOR group, and PBS+anti-HIF-1 α group. High-glucose and hypoxia-induced hREC in the PBS and Exo groups were respectively co-cultured with PBS and 100 μg/ml hUCMSC Exo. PBS+anti-mTOR group, PBS+anti-HIF-1 α group: 500 nmol/L mTOR inhibitor ADZ2014, 25 μmol/L HIF-1 α inhibitor YC-1 pretreatment for hREC 12 h, and then co-culture with PBS after High-glucose and hypoxia-induced. PBS+anti-miR126 group, Exo+anti-miR126 group: miR-126 LNA power inhibitor probe was transfected with high glucose, and co-cultured with PBS and hUCMSC Exo 6 h after transfection. Real-time polymerase chain reaction (qPCR) measured miRNA-126 expression levels in PBS, and Exo groups for 0, 8, 16 and 24 h. After 24 hof co-culture, the levels of mTOR and HIF-1 α in the cells of PBS and Exo groups were detected by immunofluorescence, Western blot and qPCR, respectively. Western blot, qPCR detection of VEGF-A expression levels in cells of the PBS+anti-mTOR and PBS+anti-HIF-1 α groups. The expression of VE GF-A, mTOR, and HIF-1 α mRNA was measured in cells of PBS+anti-miR126 group and Exo+anti-miR126 group by qPCR. Comparison between two groups was performed by t-test; one-way ANOVA was used for comparison between multiple groups. ResultsAt 0, 8, 16 and 24 h, the relative mRNA expression of miR-126 gradually increased in the Exo group (F=95.900, P<0.05). Compared with the PBS group, The mTOR, HIF-1 α protein (t=3.466, 6.804), mRNA in HRECs in the Exo group, VEGF-A mRNA expression (t=8.642, 7.897, 6.099) were all downregulated, the difference was statistically significant (P<0.05). The relative expression level of VEGF-Aprotein (t=3.337, 7.380) and mRNA (t=8.515, 10.400) was decreased in HRECs of the anti-mTOR+PBS group and anti-HIF-1 α+PBS group, differences were statistically significant (P<0.05). The relative expression of VEGF-A, mTOR, and HIF-1 α mRNA was significantly increased in the cells of the Exo+anti-miR126 group, the differences were all statistically significant (t=4.664, 6.136, 6.247; P<0.05). ConclusionsmiR-126 plays a role in regulating the effect of hUCMSCs exosomes on VEGF-A levels in high glucose-induced HRECs via mTOR-HIF-1 α pathway.
ObjectiveTo investigate the effect of adipose-derived stem cell derived exosomes (ADSC-Exos) on angiogenesis after skin flap transplantation in rats.MethodsADSCs were isolated and cultured by enzymatic digestion from voluntary donated adipose tissue of patients undergoing liposuction. The 3rd generation cells were observed under microscopy and identified by flow cytometry and oil red O staining at 14 days after induction of adipogenesis. After cells were identified as ADSCs, ADSC-Exos was extracted by density gradient centrifugation. And the morphology was observed by transmission electron microscopy, the surface marker proteins (CD63, TSG101) were detected by Western blot, and particle size distribution was measured by nanoparticle size tracking analyzer. Twenty male Sprague Dawley rats, weighing 250-300 g, were randomly divided into ADSC-Exos group and PBS group with 10 rats in each group. ADSC-Exos (ADSC-Exos group) and PBS (PBS group) were injected into the proximal, middle, and distal regions of the dorsal free flaps with an area of 9 cm×3 cm along the long axis in the two groups. The survival rate of the flap was measured on the 7th day, and then the flap tissue was harvested. The tissue morphology was observed by HE staining, and mean blood vessel density (MVD) was measured by CD31 immunohistochemical staining.ResultsADSCs were identified by microscopy, flow cytometry, and adipogenic induction culture. ADSC-Exos was a round or elliptical membrane vesicle with clear edge and uniform size. It has high expression of CD63 and TSG101, and its size distribution was 30-200 nm, which was in accordance with the size range of Exos. The distal necrosis of the flaps in the ADSC-Exos group was milder than that in the PBS group. On the 7th day, the survival rate of the flaps in the ADSC-Exos group was 64.2%±11.5%, which was significantly higher than that in the PBS group (31.0%±6.6%; t=7.945, P=0.000); the skin appendages in the middle region of the flap in the ADSC-Exos group were more complete, the edema in the proximal region was lighter and the vasodilation was more extensive. MVD of the ADSC-Exos group was (103.3±27.0) /field, which was significantly higher than that of the PBS group [(45.3±16.2)/field; t=3.190, P=0.011].ConclusionADSC-Exos can improve the blood supply of skin flaps by promoting the formation of neovascularization after skin flap transplantation, thereby improve the survival rate of skin flaps in rats.
ObjectiveTo investigate the effects of adipose-derived stem cell released exosomes (ADSC-Exos) on wound healing in diabetic mice.MethodsThe ADSCs were isolated from the adipose tissue donated by the patients and cultured by enzymatic digestion. The supernatant of the 3rd generation ADSCs was used to extract Exos (ADSC-Exos). The morphology of ADSC-Exos was observed by transmission electron microscopy. The membrane-labeled proteins (Alix and CD63) were detected by Western blot, and the particle size distribution was detected by nanoparticle tracking analyzer. The fibroblasts were isolated from the skin tissue donated by the patients and cultured by enzymatic digestion. The 5th generation fibroblasts were cultured with PKH26-labeled ADSC-Exos, and observed by confocal fluorescence microscopy. The effects of ADSC-Exos on proliferation and migration of fibroblasts were observed with cell counting kit 8 (CCK-8) and scratch method. Twenty-four 8-week-old Balb/c male mice were used to prepare a diabetic model. A full-thickness skin defect of 8 mm in diameter was prepared on the back. And 0.2 mL of ADSC-Exos and PBS were injected into the dermis of the experimental group (n=12) and the control group (n=12), respectively. On the 1st, 4th, 7th, 11th, 16th, and 21st days, the wound healing was observed and the wound healing rate was calculated. On the 7th, 14th, and 21st days, the histology (HE and Masson) and CD31 immunohistochemical staining were performed to observe the wound structure, collagen fibers, and neovascularization.ResultsADSC-Exos were the membranous vesicles with clear edges and uniform size; the particle size was 40-200 nm with an average of 102.1 nm; the membrane-labeled proteins (Alix and CD63) were positive. The composite culture observation showed that ADSC-Exos could enter the fibroblasts and promote the proliferation and migration of fibroblasts. Animal experiments showed that the wound healing of the experimental group was significantly faster than that of the control group, and the wound healing rate was significantly different at each time point (P<0.05). Compared with the control group, the wound healing of the experimental group was better. There were more microvessels in the early healing stage, and more deposited collagen fibers in the late healing stage. There were significant differences in the length of wound on the 7th, 14th, and 21st days, the number of microvessels on the 7th and 14th days, and the rate of deposited collagen fibers on the 14th and 21st days between the two groups (P<0.05).ConclusionADSC-Exos can promote the wound healing in diabetic mice by promoting angiogenesis and proliferation and migration of fibroblasts and collagen synthesis.
Objective To explore the effects of adipose-derived stem cell released exosomes (ADSC-Exos) on the proliferation, migration, and tube-like differentiation of human umbilical vein endothelial cells (HUVECs). Methods Adipose tissue voluntarily donated by liposuction patients was obtained. The ADSCs were harvested by enzyme digestion and identified by flow cytometry and adipogenic induction. The ADSC-Exos were extracted from the supernatant of the 3rd generation ADSCs and the morphology was observed by transmission electron microscopy. The surface proteins (Alix and CD63) were detected by Western blot. The nanoparticle tracking analyzer NanoSight was used to analyze the size distribution of ADSC-Exos. After co-culture of PKH26 fluorescently labeled ADSC-Exos with HUVECs, confocal microscopy had been used to observe whether ADSC-Exos could absorbed by HUVECs. ADSC-Exos and HUVECs were co-cultured for 1, 2, 3, 4, and 5 days. The effect of ADSC-Exos on the proliferation of HUVECs was detected by cell counting kit 8 (CCK-8) assay. The expression of VEGF protein in the supernatant of HUVECs with or without ADSC-Exos had been detected by ELISA after 12 hours. Transwell migration assay was used to detect the effect of ADSC-Exos on the migration ability of HUVECs. The effect of ADSC-Exos on the tubular structure formation of HUVECs was observed by Matrigel experiments in vitro. The formation of subcutaneous tubular structure in vivo was observed in BALB/c male nude mice via the injection of HUVECs and Matrigel with or without ADSC-Exos. After 2 weeks, the neovascularization in Matrigel was measured and mean blood vessel density (MVD) was calculated. The above experiments were all controlled by the same amount of PBS. Results After identification, the cultured cells were consistent with the characteristics of ADSCs. ADSC-Exos were circular or elliptical membranous vesicle with uniform morphology under transmission electron microscopy, and expresses the signature proteins Alix and CD63 with particle size ranging from 30 to 200 nm. Confocal microscopy results showed that ADSC-Exos could be absorbed by HUVECs. The CCK-8 analysis showed that the cell proliferation of the experimental group was better than that of the control group at each time point (P<0.05). The result of Transwell showed that the trans-membrane migration cells in the experimental group were significantly more than that in the control group (t=9.534, P=0.000). In vitro, Matrigel tube-forming experiment showed that the number of tube-like structures in the experimental group was significantly higher than that of the control group (t=15.910, P=0.000). In vivo, the MVD of the experimental group was significantly higher than that of the control group (t=16.710, P=0.000). The ELISA assay showed that the expression of VEGF protein in the supernatant of the experimental group was significantly higher than that of the control group (t=21.470, P=0.000). Conclusion ADSC-Exos can promote proliferation, migration, and tube-like structure formation of HUVECs, suggesting that ADSC-Exos can promote angiogenesisin vitro and in vivo.
ObjectiveTo explore the potential therapeutic effects of endothelial progenitor cells derived small extracellular vesicles (EPCs-sEVs) on spinal cord injury in mice.MethodsEPCs were separated from femur and tibia bone marrow of 20 C57BL/6 male mice, and identified by double fluorescence staining and flow cytometry. Then the EPCs were passaged and the cell supernatants from P2-P4 generations EPCs were collected; the EPCs-sEVs were extracted by ultracentrifugation and identified by transmission electron microscopy, nanoflow cytometry, and Western blot. Forty C57BL/6 female mice were randomly divided into 4 groups (n=10). The mice were only removed T10 lamina in sham group, and prepared T10 spinal cord injury models in the model group and the low and high concentration intervention groups. After 30 minutes, 3 days, and 7 days of operation, the mice in low and high concentration intervention groups were injected with EPCs-sEVs at concentrations of 1×109 and 1×1010cells/mL through the tail vein, respectively. The behavioral examinations [Basso Mouse Scale (BMS) score, inclined plate test, Von Frey test] , and the gross, HE staining, and immunohistochemical staining were performed to observe the structural changes of the spinal cord at 4 weeks after operation. Another 3 C57BL/6 female mice were taken to prepare T10 spinal cord injury models, and DiR-labeled EPCs- sEVs were injected through the tail vein. After 30 minutes, in vivo imaging was used to observe whether the EPCs-sEVs reached the spinal cord injury site.ResultsAfter identification, EPCs and EPCs-sEVs derived from mouse bone marrow were successfully obtained. In vivo imaging of the spinal cord showed that EPCs-sEVs were recruited to the spinal cord injury site within 30 minutes after injection. There was no significant difference in BMS scores and the maximum angle of the inclined plate test between two intervention groups and the model group within 2 weeks after operation (P>0.05), while both were significantly better than the model group (P<0.05) after 2 weeks. The Von Frey test showed that the mechanical pain threshold of the two intervention groups were significantly higher than that of model group and lower than that of sham group (P<0.05); there was no significant difference between two intervention groups (P>0.05). Compared with the model group, the injured segment of the two intervention groups had smaller spinal cord tissue defects, less mononuclear cells infiltration, more obvious tissue structure recovery, and more angiogenesis, and these differences were significant (P<0.05); there was no significant difference between the two intervention groups.ConclusionEPCs-sEVs can promote the repair of spinal cord injury in mice and provide a new plan for the biological treatment of spinal cord injury.
ObjectiveTo investigate whether exosomes derived from miR-27a-overexpressing human umbilical vein endothelial cells (HUVECs)—exo (miR-27a) can promote bone regeneration and improve glucocorticoids (GC) induced osteonecrosis of femoral head (ONFH) (GC-ONFH).MethodsThe exo (miR-27a) were intended to be constructed and identified by transmission electron microscopy, nanoparticle tracking analysis, Western blot, and real-time fluorescent quantitative PCR (qRT-PCR). qRT-PCR was used to evaluate the effect of exo (miR-27a) in delivering miR-27a to osteoblasts (MC3T3-E1 cells). Alkaline phosphatase staining, alizarin red staining, and qRT-PCR were used to evaluate its effect on MC3T3-E1 cells osteogenesis. Dual-luciferase reporter (DLRTM) assay was used to verify whether miR-27a targeting Dickkopf WNT signaling pathway inhibitor 2 (DKK2) was a potential mechanism, and the mechanism was further verified by qRT-PCR, Western blot, and alizarin red staining in MC3T3-E1 cells. Finally, the protective effect of exo (miR-27a) on ONFH was verified by the GC-ONFH model in Sprague Dawley (SD) rats.ResultsTransmission electron microscopy, nanoparticle tracking analysis, Western blot, and qRT-PCR detection showed that exo (miR-27a) was successfully constructed. exo (miR-27a) could effectively deliver miR-27a to MC3T3-E1 cells and enhance their osteogenic capacity. The detection of DLRTM showed that miR-27a promoted bone formation by directly targeting DDK2. Micro-CT and HE staining results of animal experiments showed that tail vein injection of exo (miR-27a) improved the osteonecrosis of SD rat GC-ONFH model.Conclusionexo (miR-27a) can promote bone regeneration and protect against GC-ONFH to some extent.
Acute kidney injury (AKI) is characterized by a sudden and rapid decline of renal function and associated with high morbidity and mortality. AKI can be caused by various factors, and ischemia-reperfusion injury (IRI) is one of the most common causes of AKI. An increasing number of studies found out that exosomes of mesenchymal stem cells (MSCs) could alleviate IRI-AKI by the adjustment of the immune response, the suppression of oxidative stress, the reduction of cell apoptosis, and the promotion of tissue regeneration. This article summarizes the effect and mechanism of MSC-derived exosomes in the treatment of renal ischemia-reperfusion injury, in order to provide useful information for the researches on this field.